Evgeny Epelbaum, RUB

ECT* workshop Three-Body Forces: From Matter to Nuclei, Mai 5-9 2014

Improved chiral nuclear potentials

Motivation Construction of the potential Some results Summary & outlook

Motivation

- Chiral 3NF at N³LO & N⁴LO are derived using DR while the EGM 2NFs employ SFR...
- Would like to update πN LECs (and have a flexibility to use different sets of them)
- Need to think about relativistic corrections
- Nd scattering is the most natural testing ground for chiral 3NF. Large 3NF effects are expected/needed at intermediate & higher energies [Nasser's talk]
 - → need to increase the accuracy of chiral 2NF:
 - go to higher orders in the chiral expansion
 - try to reduce finite-cutoff artefacts [similar philosophy for NLEFT, Dean's talk]

np differential cross section & analyzing power

Nd tensor analyzing powers at 65 MeV

Finite-cutoff artifacts

Why cutoff?

 $T = V + VG_0T = V + VG_0V + VG_0VG_0V + \dots$

increasingly UV divergent integrals are generated through iterations

Ideally, would like to calculate the integrals

$$T^{(n)} = V[G_0V]^{n-1} = m^{n-1} \int_0^{\Lambda} d^3 l_1 \dots d^3 l_{n-1} \frac{V(\vec{p}', \vec{l}_1) V(\vec{l}_1, \vec{l}_2) \dots V(\vec{l}_{n-1}, \vec{p})}{[p^2 - l_1^2 + i\epsilon] \dots [p^2 - l_{n-1}^2 + i\epsilon]}$$

subtract the UV divergences ($\sim \log \Lambda$; Λ ; Λ^2 ;...) and take the limit $\Lambda \rightarrow \infty$. This is not possible in practice (except for pionless EFT) \longrightarrow let Λ finite and adjust bare C_i to exp data (= implicit renormalization). Λ should be not taken too high [Lepage, EE, Meißner, Gegelia], in practice $\max[\Lambda] \sim 600$ MeV (otherwise spurious BS...)

Price to pay: finite cutoff artifacts (i.e. terms ~ $1/\Lambda$; $1/\Lambda^2$; $1/\Lambda^3$;...), may become an issue at higher energies (e.g. $E_{lab} \sim 200$ MeV corresponds to p ~ 310 MeV/c)

Is it possible to eliminate or at least reduce finite cutoff artifacts?

1st option: Renormalizable chiral EFT for NN ($\Lambda = \infty$)

Refrain from doing non relativistic expansion prior to solving the integral equation EE, Gegelia '12
→ 3D equations which fulfill relativistic elastic unitarity, e.g.:

$$T(\vec{p}\,',\vec{p}) = V_{2N}^{(0)}(\vec{p}\,',\vec{p}) + \frac{m_N^2}{2} \int \frac{d^3k}{(2\,\pi)^3} \frac{V_{2N}^{(0)}(\vec{p}\,',\vec{k})\,T(\vec{k},\vec{p})}{(k^2 + m_N^2)\,(E - \sqrt{k^2 + m_N^2} + i\,\epsilon)} \qquad \text{Kadyshevsky '68}$$

- LO equation is log-divergent (i.e. renormalizable) \rightarrow can safely take $\Lambda \rightarrow \infty$!
- corrections beyond LO are to be included perturbatively
- paramater-free results for m_q dependence of NN observables [EE, Gegelia '13] and the deuteron form factors at LO [EE, Gasparyan, Gegelia, Schindler '14]

Neutron-proton phase shifts at LO

EE, Gegelia '12

2nd option: Keep Λ finite but try to reduce finite-Λ artifacts

$$\langle \vec{p}' | V^{\text{NNLO}} | \vec{p} \rangle = \left[V_{1\pi}^{(0)} + V_{2\pi}^{(2)} + V_{2\pi}^{(3)} + V_{\text{cont}}^{(0)} + V_{\text{cont}}^{(2)} \right] e^{\frac{-p'^4 - p^4}{\Lambda^4}}$$

The cutoff Λ should not be chosen too large (spurious bound states, nonlinearities, nonrenormalizable theory) Lepage'97, EE., Meißner '06, EE, Gegelia '09. On the other hand, smaller values of Λ introduce unnecessary errors.

Typical choice: $\Lambda = 450...600 \text{ MeV}$ [N³LO potentials by EGM, EM]

$$\langle \vec{p}' | V^{\text{NNLO}} | \vec{p} \rangle = \left[V_{1\pi}^{(0)} + V_{2\pi}^{(2)} + V_{2\pi}^{(3)} + V_{\text{cont}}^{(0)} + V_{\text{cont}}^{(2)} \right] e^{\frac{-p'^4 - p^4}{\Lambda^4}}$$

The cutoff Λ should not be chosen too large (spurious bound states, nonlinearities, nonrenormalizable theory) Lepage'97, EE., Meißner '06, EE, Gegelia '09. On the other hand, smaller values of Λ introduce unnecessary errors.

Typical choice: $\Lambda = 450...600 \text{ MeV}$ [N³LO potentials by EGM, EM]

<u>**Claim</u></u>: while the above nonlocal regulator simplifies the determination of the LECs, it cuts off some model-independent long-range physics one would like to keep and leaves some model-dependent short-range physics one would like to cut off... Given that** $V_{1\pi}^{(0)} + V_{2\pi}^{(2)} + V_{2\pi}^{(3)}$ **is local**, <u>local regulator will do a better job</u>!</u>

Reminder:

 $V_{\text{local}}(\vec{p}',\vec{p}) \equiv \langle \vec{p}' | V_{\text{local}} | \vec{p} \rangle = V(\vec{p}' - \vec{p}) \longrightarrow V(\vec{r}',\vec{r}) \equiv \langle \vec{r}' | V | \vec{r} \rangle = \delta^3(\vec{r}' - \vec{r})V(\vec{r})$

Peripheral NN scattering as a long-range filter: insensitive to short-range physics and determined by the model-independent long-range interaction ($V_{1\pi}$). Can be computed using Born approximation: $T_{\alpha'\alpha}(p) \equiv \langle p, \alpha' | T | p, \alpha \rangle = \langle p, \alpha' | V_{1\pi} | p, \alpha \rangle$

where
$$V_{1\pi}(\vec{q}\,) = -rac{g_A^2}{4F_\pi^2} rac{(\vec{q}\cdot\vec{\sigma}_1)(\vec{q}\cdot\vec{\sigma}_2)}{\vec{q}\,^2 + M_\pi^2} m{ au}_1\cdotm{ au}_2$$

Peripheral NN scattering as a long-range filter: insensitive to short-range physics and determined by the model-independent long-range interaction ($V_{1\pi}$). Can be computed using Born approximation: $T_{\alpha'\alpha}(p) \equiv \langle p, \alpha' | T | p, \alpha \rangle = \langle p, \alpha' | V_{1\pi} | p, \alpha \rangle$

where
$$V_{1\pi}(\vec{q}\,) = -\frac{g_A^2}{4F_\pi^2} \frac{(\vec{q}\cdot\vec{\sigma}_1)(\vec{q}\cdot\vec{\sigma}_2)}{\vec{q}\,^2 + M_\pi^2} \boldsymbol{\tau}_1\cdot\boldsymbol{\tau}_2$$

• Standard, nonlocal regularization $V_{1\pi}^{\text{reg}}(\vec{q}) = V_{1\pi}(\vec{q}) F\left(\frac{p'}{\Lambda}, \frac{p}{\Lambda}\right)$

Partial-wave decomposition: $\langle p', \alpha' | V_{1\pi}^{\text{reg}} | p, \alpha \rangle = \langle p', \alpha' | V_{1\pi} | p, \alpha \rangle F\left(\frac{p'}{\Lambda}, \frac{p}{\Lambda}\right)$

Regulator affects all partial waves at high momenta independently on $\, lpha, \, lpha'$

Peripheral NN scattering as a long-range filter: insensitive to short-range physics and determined by the model-independent long-range interaction ($V_{1\pi}$). Can be computed using Born approximation: $T_{\alpha'\alpha}(p) \equiv \langle p, \alpha' | T | p, \alpha \rangle = \langle p, \alpha' | V_{1\pi} | p, \alpha \rangle$

where
$$V_{1\pi}(\vec{q}\,) = -\frac{g_A^2}{4F_\pi^2} \frac{(\vec{q}\cdot\vec{\sigma}_1)(\vec{q}\cdot\vec{\sigma}_2)}{\vec{q}\,^2 + M_\pi^2} \boldsymbol{\tau}_1\cdot\boldsymbol{\tau}_2$$

• Standard, nonlocal regularization $V_{1\pi}^{\text{reg}}(\vec{q}) = V_{1\pi}(\vec{q}) F\left(\frac{p'}{\Lambda}, \frac{p}{\Lambda}\right)$ Partial-wave decomposition: $\langle p', \alpha' | V_{1\pi}^{\text{reg}} | p, \alpha \rangle = \langle p', \alpha' | V_{1\pi} | p, \alpha \rangle F\left(\frac{p'}{\Lambda}, \frac{p}{\Lambda}\right)$ Regulator affects all partial waves at high momenta independently on α , α'

Local regularization

 $V_{1\pi}^{\text{reg}}(\vec{q}) = V_{1\pi}(\vec{q}) F\left(\frac{q}{\Lambda}\right)$ or, alternatively, $V_{1\pi}^{\text{reg}}(\vec{r}) = V_{1\pi}(\vec{r}) F(r/R_0)$ Partial-wave matrix elements in momentum space:

$$\langle p', \alpha' | V_{1\pi}^{\text{reg}} | p, \alpha \rangle \sim \int r^2 dr \, j_{l'}(p'r) \left[V_{1\pi}^{\alpha'\alpha}(r) F(r/R_0) \right] j_l(pr)$$

becomes insensitive to F for high l, l'

Construction of the potential (published local version)

Gezerlis, Tews, EE, Gandolfi, Hebeler, Nogga, Schwenk, PRL 111 (2013) 032501; more details in the talk by Ingo

There are 9 isospin-concerving contact terms whose choice is not unique. Standard: $V_{\text{cont}}^{(0)} = C_S + C_T(\vec{\sigma}_1 \cdot \vec{\sigma}_2)$ $V_{\text{cont}}^{(2)} = C_1 q^2 + C_2 k^2 + C_3 q^2 (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + C_4 k^2 (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + \frac{iC_5}{2} (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \vec{q} \times \vec{k} + C_6 (\vec{\sigma}_1 \cdot \vec{q}) (\vec{\sigma}_2 \cdot \vec{q}) + C_7 (\vec{\sigma}_1 \cdot \vec{k}) (\vec{\sigma}_2 \cdot \vec{k})$ where $\vec{q} = \vec{p}' - \vec{p}$, $\vec{k} = (\vec{p} + \vec{p}')/2$

Construction of the potential (published local version)

Gezerlis, Tews, EE, Gandolfi, Hebeler, Nogga, Schwenk, PRL 111 (2013) 032501; more details in the talk by Ingo

There are 9 isospin-concerving contact terms whose choice is not unique. Standard: $V_{\text{cont}}^{(0)} = C_S + C_T(\vec{\sigma}_1 \cdot \vec{\sigma}_2)$ $V_{\text{cont}}^{(2)} = C_1 q^2 + C_2 k^2 + C_3 q^2 (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + C_4 k^2 (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + \frac{iC_5}{2} (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \vec{q} \times \vec{k} + C_6 (\vec{\sigma}_1 \cdot \vec{q}) (\vec{\sigma}_2 \cdot \vec{q}) + C_7 (\vec{\sigma}_1 \cdot \vec{k}) (\vec{\sigma}_2 \cdot \vec{k})$

where
$$\vec{q} = \vec{p}' - \vec{p}, \ \vec{k} = (\vec{p} + \vec{p}')/2$$

One can choose instead a local basis:

$$V_{\text{cont}}^{(2)} = C_1 q^2 + C_2 q^2 (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) + C_3 q^2 (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + C_4 q^2 (\vec{\sigma}_1 \cdot \vec{\sigma}_2) (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) + \frac{iC_5}{2} (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \vec{q} \times \vec{k}$$

+ $C_6(\vec{\sigma}_1 \cdot \vec{q})(\vec{\sigma}_2 \cdot \vec{q}) + C_7(\vec{\sigma}_1 \cdot \vec{q})(\vec{\sigma}_2 \cdot \vec{q})(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)$

Construction of the potential (published local version)

Gezerlis, Tews, EE, Gandolfi, Hebeler, Nogga, Schwenk, PRL 111 (2013) 032501; more details in the talk by Ingo

There are 9 isospin-concerving contact terms whose choice is not unique. Standard: $V_{\text{cont}}^{(0)} = C_S + C_T(\vec{\sigma}_1 \cdot \vec{\sigma}_2)$ $V_{\text{cont}}^{(2)} = C_1 q^2 + C_2 k^2 + C_3 q^2 (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + C_4 k^2 (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + \frac{iC_5}{2} (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \vec{q} \times \vec{k} + C_6 (\vec{\sigma}_1 \cdot \vec{q}) (\vec{\sigma}_2 \cdot \vec{q}) + C_7 (\vec{\sigma}_1 \cdot \vec{k}) (\vec{\sigma}_2 \cdot \vec{k})$

where
$$\vec{q} = \vec{p}' - \vec{p}, \ \vec{k} = (\vec{p} + \vec{p}')/2$$

One can choose instead a local basis:

$$V_{\text{cont}}^{(2)} = C_1 q^2 + C_2 q^2 (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) + C_3 q^2 (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + C_4 q^2 (\vec{\sigma}_1 \cdot \vec{\sigma}_2) (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) + \frac{i C_5}{2} (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \vec{q} \times \vec{k} + C_6 (\vec{\sigma}_1 \cdot \vec{q}) (\vec{\sigma}_2 \cdot \vec{q}) + C_7 (\vec{\sigma}_1 \cdot \vec{q}) (\vec{\sigma}_2 \cdot \vec{q}) (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)$$

Make Fourier Transform and regularize in configuration space, e.g.:

$$V_{\rm long}(\vec{r}) \to V_{\rm long}(\vec{r}) \Big[1 - e^{-r^4/R_0^4} \Big]$$
 and $\delta^3(\vec{r}) \to \alpha e^{-r^4/R_0^4}$ where $\alpha = \frac{1}{\pi\Gamma(3/4)R_0^3}$

The LECs are determined from NN S-, P-waves and the mixing angle ε_1

Choice of the cutoff

What is the breakdown distance of the chiral expansion of the multiple-pion exchange ?

Choice of the cutoff

Certain classes of multiple-pion exchange diagrams (MSS) can be calculated analytically to an infinite order and resummed

Baru, EE, Hanhart, Hoferichter, Kudryavtsev, Phillips, EPJA 48 (12) 69

Resummed central potential generated by multi-pion exchange (c₃-part)

pole(!) ar $r \sim 0.8$ fm but good convergence of the chiral expansion for r > 1 fm

New chiral NN interactions

Already available:

 Completely local (except for the short-range LS-term) potentials @ LO, NLO, N²LO [R₀ = 1.0, 1.1 and 1.2 fm and Λ_{SFR} = 0.8...1.4 GeV]
Freunek '08; Gezerlis, Tews, EE, Gandolfi, Hebeler, Nogga, Schwenk, PRL 111 (2013) 032501; in preparation

In development (testing) [in collaboration with: Krebs, Nogga, Meißner, Golak, Skibinski, Witala, Kamada]

- New version of local-chiral potentials @ LO, NLO, N²LO [Λ_{SFR} up to Infinity, PWD MEs and operator form both in r-space and p-space]
- New improved-chiral potentials up to N³LO [Λ_{SFR} up to Infinity, PWD MEs and operator form in p-space]

Some results (everything very preliminary)

I-chiral 2NF: Order-by-order improvement

neutron-proton phase shifts on I-chiral 2NF at LO, NLO and N²LO

 $R_0 = 1 \text{ fm}, \Lambda_{SFR} = 2 \text{ GeV}$

Error budget: local vs nonlocal regulators

Absolute errors in S- and P-wave phase shifts at N²LO

Ordering of partial waves: ${}^{1}S_{0}$, ${}^{3}S_{1}$, ${}^{1}P_{1}$, ${}^{3}P_{0}$, ${}^{3}P_{1}$, ${}^{3}P_{2}$

i-chiral 2NF: Order-by-order improvement

neutron-proton phase shifts on *i-chiral* 2NF at LO, NLO, N²LO and N³LO (w.o. 1/m)

 $R_0 = 0.9 \text{ fm}, \Lambda_{SFR} = \text{Infinity [i.e. DR]}$

Cutoff dependence: i-chiral vs old EGM'04

np phase shifts based on EGM'04 N²LO/N³LO 2NF

N²LO: Λ = 450...600 fm, Λ_{SFR} =500...700 MeV N³LO: Λ = 450...600 fm, Λ_{SFR} =500...700 MeV

Cutoff dependence: i-chiral vs old EGM'04

np phase shifts based on EGM'04 N²LO/N³LO 2NF

np phase shifts based on i-chiral N²LO/N³LO 2NF

N²LO: Λ = 450...600 fm, Λ_{SFR} =500...700 MeV N³LO: Λ = 450...600 fm, Λ_{SFR} =500...700 MeV N²LO: R₀ = 0.8...1.0 fm, Λ_{SFR} =1GeV...Infinity N³LO: R₀ = 0.8...1.1 fm, Λ_{SFR} =1GeV...Infinity LECs from Q⁴ KH πN

Cutoff dependence: i-chiral vs old EGM'04

np phase shifts based on EGM'04 N²LO/N³LO 2NF

N²LO: $R_0 = 0.8...1.0$ fm, $\Lambda_{SFR} = 1$ GeV...Infinity N³LO: $R_0 = 0.8...1.1$ fm, $\Lambda_{SFR} = 1$ GeV...Infinity LECs from Q^4 KH πN

N²LO: $\Lambda = 450...600$ fm, $\Lambda_{SFR} = 500...700$ MeV N³LO: $\Lambda = 450...600$ fm, $\Lambda_{SFR} = 500...700$ MeV

I-chiral 2NF: elastic nd scattering order-by-order

EE, Golak, Kamada, Krebs, Meißner, Nogga, Skibinski, Witala, in preparation

I-chiral 2NF: elastic nd scattering order-by-order

EE, Golak, Kamada, Krebs, Meißner, Nogga, Skibinski, Witala, in preparation

I-chiral 2NF: elastic nd scattering order-by-order

EE, Golak, Kamada, Krebs, Meißner, Nogga, Skibinski, Witala, in preparation

nd scattering with I-chiral 2NF: Cutoff dependence

EE, Golak, Kamada, Krebs, Meißner, Nogga, Skibinski, Witala, in preparation

nonlocal NLO/N²LO/N³LO: $\Lambda = 450...600 \text{ MeV},$ $\Lambda_{SFR} = 500...700 \text{ MeV}$

local NLO/N²LO:

 $R_0 = 1...1.2 \text{ fm},$ $\Lambda_{SFR} = 1...2 \text{ GeV}$

Summary and outlook

A new generation of chiral NN potentials up to N³LO is being developed:

 Iocal-chiral (up to N²LO): local interactions, can be used in QMC
 improved-chiral (up to N³LO): nonlocal potentials

Common features: better performance at higher energies, less sensitivity to cutoffs, no need for SFR, can use c_i's from πN.

First applications to Nd scattering (no 3NF yet) look very promising: given the increased accuracy at intermediate energies, can do interesting physics even at the N²LO level. **Ongoing work: elastic Nd scattering and breakup**, **inclusion of the 3NF using the same regularization, sensitivity to c**_i's, ...

Longer-term plans: Nd scattering and light nuclei at N³LO, nuclear potentials from chiral EFT with explicit Δ 's, four-body forces, N⁴LO, ...