A new generation of chiral nuclear forces

In collaboration with: H.Krebs (Bochum), U.-G.Meißner (Bonn/Jülich), A.Nogga (Jülich), J.Golak, R.Skibinsky, H.Witala (Cracow), H.Kamada (Kyushu)

Introduction

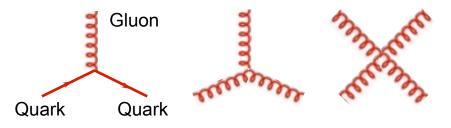
New chiral NN potentials

Theoretical uncertainty

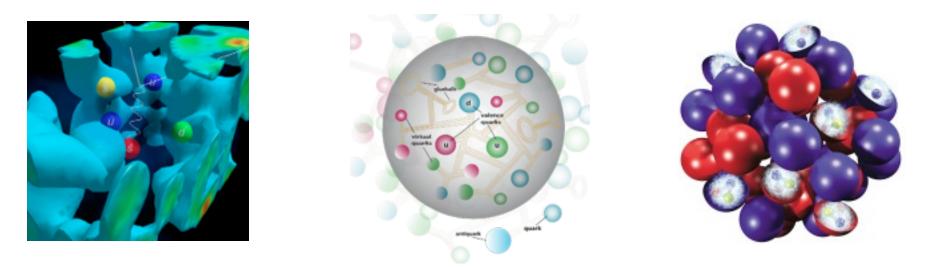
Elastic Nd scattering: where to search for 3NF Summary & outlook

Facets of strong interactions

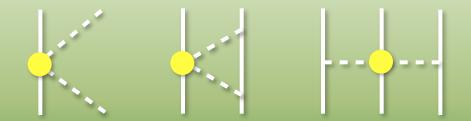
$$\mathcal{L}_{\text{QCD}} = \bar{q}(i\not\!\!\!D - m)q - \frac{1}{4}G_{\mu\nu}G^{\mu\nu}$$



Seemingly very simple formulation is responsible for extremely complex phenomena!



From QCD to nuclear physics effective chiral Lagrangian ——— (low-energy) nuclear physics



Chiral perturbation theory

- Ideal world [$m_u = m_d = 0$], zero-energy limit: non-interacting massless GBs (+ strongly interacting massive hadrons)
- Real world [m_u , $m_d \ll \Lambda_{QCD}$], low energy: weakly interacting light GBs (+ strongly interacting massive hadrons)

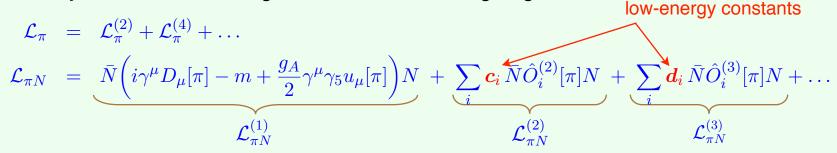
expand about the ideal world (ChPT)

Chiral Perturbation Theory

Chiral Perturbation Theory: expansion of the scattering amplitude in powers of Weinberg, Gasser, Leutwyler, Meißner, ...

 $Q = \frac{\text{momenta of pions and nucleons or } M_{\pi} \sim 140 \text{ MeV}}{\text{hard scales [at best } \Lambda_{\chi} = 4\pi F_{\pi} \sim 1 \text{ GeV}]}_{\text{Manohar, Georgi '84}}$

Tool: Feynman calculus using the effective chiral Lagrangian

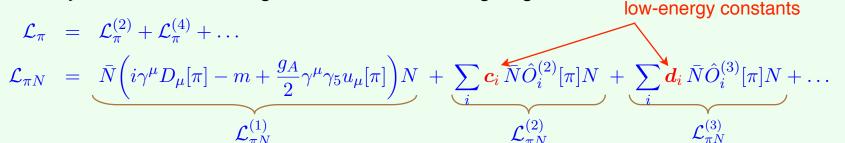


Chiral Perturbation Theory

Chiral Perturbation Theory: expansion of the scattering amplitude in powers of Weinberg, Gasser, Leutwyler, Meißner, ...

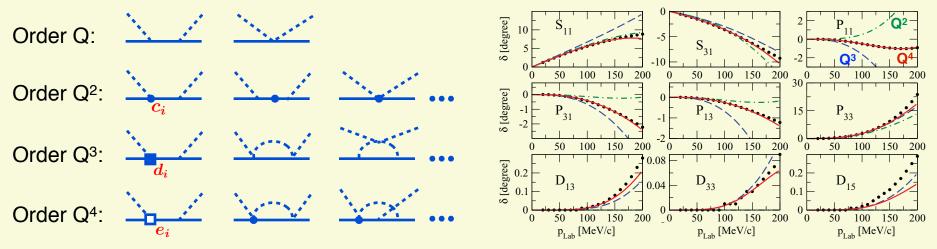
 $Q = \frac{\text{momenta of pions and nucleons or } M_{\pi} \sim 140 \text{ MeV}}{\text{hard scales [at best } \Lambda_{\chi} = 4\pi F_{\pi} \sim 1 \text{ GeV}]} \text{ Manohar, Georgi '84}$

Tool: Feynman calculus using the effective chiral Lagrangian



Pion-nucleon scattering up to Q⁴ in heavy-baryon ChPT

Fettes, Meißner '00; Krebs, Gasparyan, EE '12

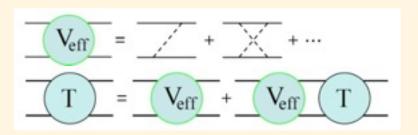


Nuclear chiral effective field theory

Nuclear chiral EFT

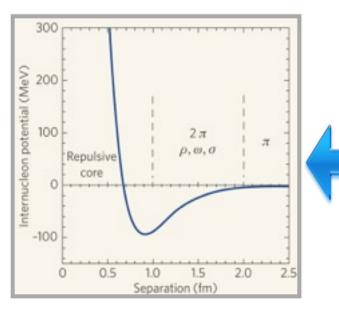
Weinberg, van Kolck, EE, Glöckle, Meißner, Machleidt, Entem...

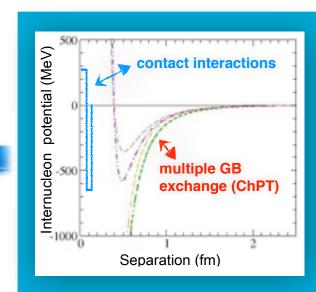
 Schrödinger equation for nucleons interacting via contact forces and long-range potentials (pion exchanges)



$$\left[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3})\right) + \underbrace{V_{2N} + V_{3N} + V_{4N} + \dots}_{\text{derived in ChPT}}\right]|\Psi\rangle = E|\Psi\rangle$$

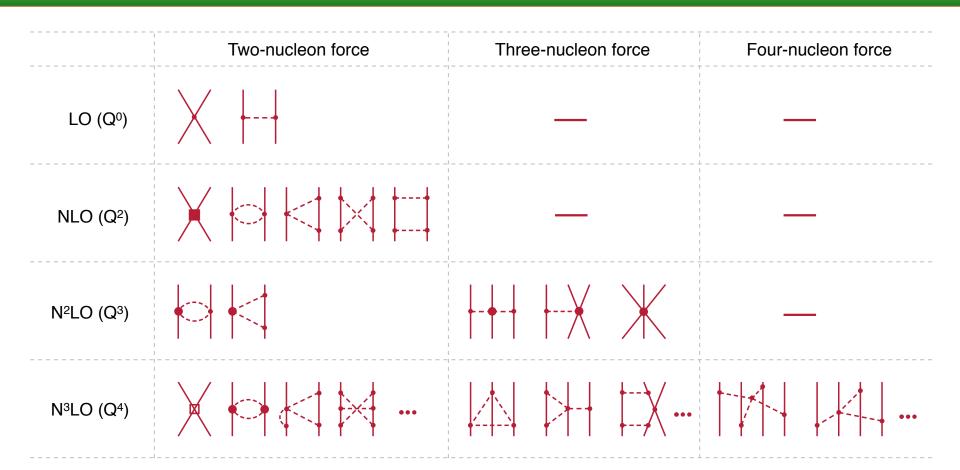
- access to heavier nuclei (ab initio few-/many-body methods)





- unified description of $\pi\pi$, πN and NN
- consistent many-body forces and currents
- systematically improvable
- bridging different reactions (electroweak, π-prod., ...)
- precision physics with/from light nuclei

Chiral expansion of nuclear forces

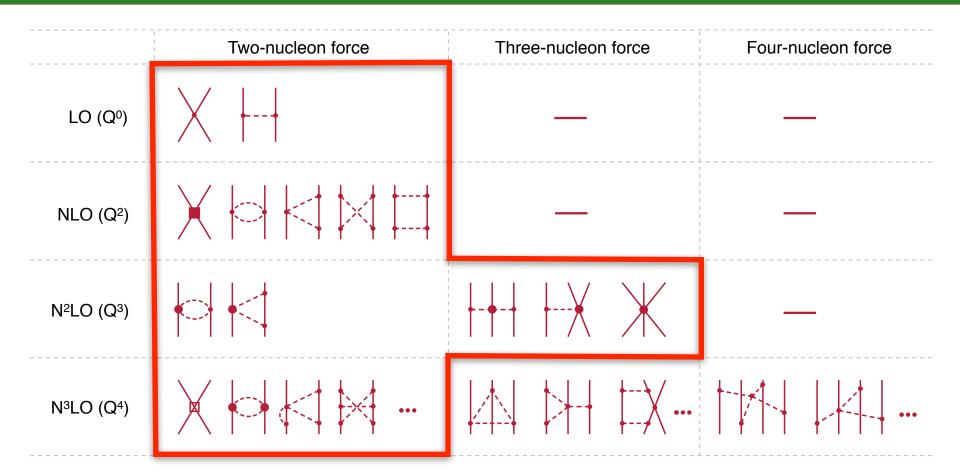


2N force: accurate N³LO potentials are available Entem-Machleidt '03; EE-Glöckle-Meißner '04

3N force: N²LO 3NF included in most calculations N³LO 3NF worked out Bernard, EE, Krebs Meißner '08,'11; (probably) not yet converged → higher orders numerical PWD developed Golak, Skibinski, Krebs, Hebeler, ..., first results available Witala et al.'13

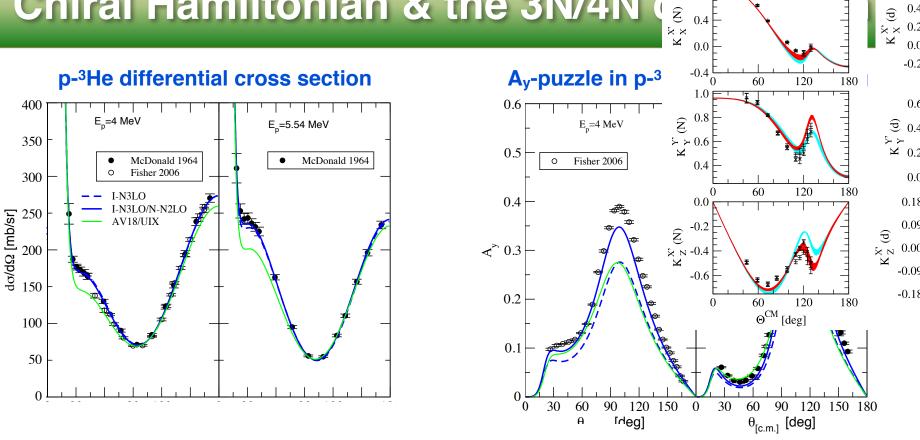
4N force: leading (i.e. N³LO) terms worked out EE '06; contrib. to ⁴He BE ~ few 100 keV Rospedzik et al. '06

Chiral expansion of nuclear forces



The "standard" nuclear chiral Hamiltonian has been extensively tested in few- and many-body systems

Chiral Hamiltonian & the 3N/4N



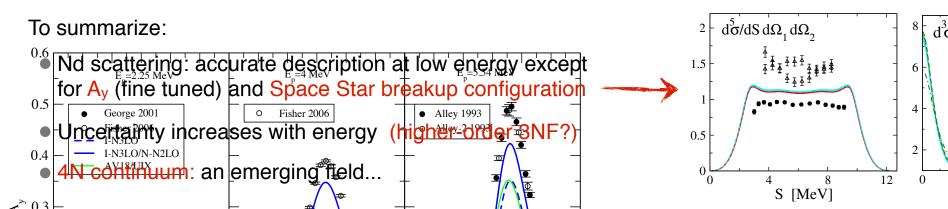
0.6

0.4

0.8

0.4

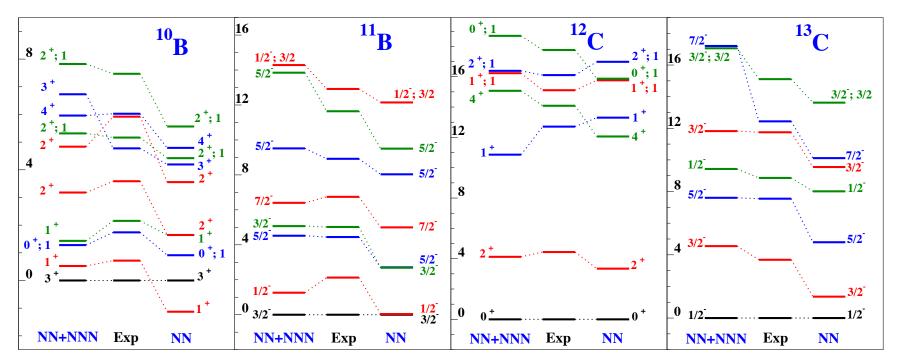
LECs D,E tuned to the ³H and ⁴He binding energies, figure from Viviani et al., arXiv:1004.1306



Chiral Hamiltonian & nuclear structure

Ab initio methods (NCSM, GFMC, CCM, Lattice, ...) + renormalization ideas (SRG, V_{low-k}, UCOM) + computational resources \longrightarrow precision ab initio nuclear structure calculations

NCSM calculation of p-shell nuclei with chiral 2NF+3NF Navratil et al. '07



- sensitive to details of the 3NF
- promising results (neutron-rich nuclei, long lifetime of ¹⁴C, neutron star radii, ...)
- still room for improvement and some open questions

Corrections to the 3NF beyond N²LO

Convergence, effects of the Δ , partial wave decomposition, determination of the LECs, impact on 3N/4N scattering observables and nuclear structure...

---> Low Energy Nuclear Physics International Collaboration (LENPIC)

Bochum-Bonn-Cracow-Darmstadt-Iowa-Jülich-Kyushu-Ohio-Orsay

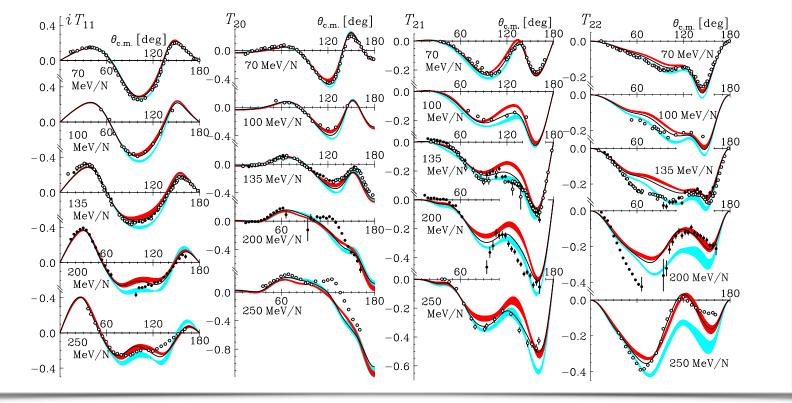
Corrections to the 3NF beyond N²LO

Convergence, effects of the Δ , partial wave decomposition, determination of the LECs, impact on 3N/4N scattering observables and nuclear structure...

→ Low Energy Nuclear Physics International Collaboration (LENPIC)

Bochum-Bonn-Cracow-Darmstadt-Iowa-Jülich-Kyushu-Ohio-Orsay

Actually, the spin structure of the 3NF is still poorly understood in spite of decades of effort! (one of the biggest challenges in nuclear physics)



Corrections to the 3NF beyond N²LO

Convergence, effects of the Δ , partial wave decomposition, determination of the LECs, impact on 3N/4N scattering observables and nuclear structure...

→ Low Energy Nuclear Physics International Collaboration (LENPIC)

Bochum-Bonn-Cracow-Darmstadt-Iowa-Jülich-Kyushu-Ohio-Orsay

Improving the accuracy/applicability range of chiral potentials

Chiral nuclear potentials are regularized using momentum-space cutoff $\Lambda \sim 500$ MeV. Reducing finite- Λ artifacts is expected to increase the accuracy/applicability range of chiral forces.

→ New generation of chiral NN potentials using a local regulator

I_{ocal}-chiral potentials @ LO, NLO, N²LO Gezerlis et al, PRL 111 (13) 032501; arXiv:1406.0454; Lynn et al. arXiv:1406.2787

i_{mproved}-chiral potentials up to N³LO EE, Krebs, Meißner, Golak, Skibinski, Witala; work in progress

Corrections to the 3NF beyond N²LO

Convergence, effects of the Δ , partial wave decomposition, determination of the LECs, impact on 3N/4N scattering observables and nuclear structure...

--> Low Energy Nuclear Physics International Collaboration (LENPIC)

Bochum-Bonn-Cracow-Darmstadt-Iowa-Jülich-Kyushu-Ohio-Orsay

Improving the accuracy/applicability range of chiral potentials

Chiral nuclear potentials are regularized using momentum-space cutoff $\Lambda \sim 500$ MeV. Reducing finite- Λ artifacts is expected to increase the accuracy/applicability range of chiral forces.

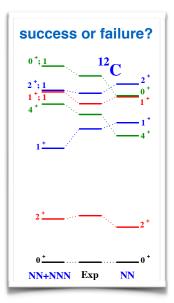
→ New generation of chiral NN potentials using a local regulator

I_{ocal}-chiral potentials @ LO, NLO, N²LO Gezerlis et al, PRL 111 (13) 032501; arXiv:1406.0454; Lynn et al. arXiv:1406.2787

i_{mproved}-chiral potentials up to N³LO EE, Krebs, Meißner, Golak, Skibinski, Witala; work in progress

Reliable estimation of theoretical uncertainties

is needed in order to test chiral dynamics in nuclear systems, identify/ resolve possible puzzles (is A_y-puzzle a real puzzle?), make reliable predictions and guide new experiments



Convergence, effects of the Δ , partial wave decomposition, determination of the LECs, impact on 3N/4N scattering observables and nuclear structure...

--> Low Energy Nuclear Physics International Collaboration (LENPIC)

Bochum-Bonn-Cracow-Darmstadt-Iowa-Jülich-Kyushu-Ohio-Orsay

today's talk

Improving the accuracy/applicability range of chiral potentials

Chiral nuclear potentials are regularized using momentum-space cutoff $\Lambda \sim 500$ MeV. Reducing finite- Λ artifacts is expected to increase the accuracy/applicability range of chiral forces.

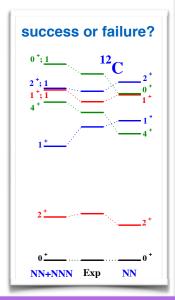
→ New generation of chiral NN potentials using a local regulator

I_{ocal}-chiral potentials @ LO, NLO, N²LO Gezerlis et al, PRL 111 (13) 032501; arXiv:1406.0454; Lynn et al. arXiv:1406.2787

i_{mproved}-chiral potentials up to N³LO EE, Krebs, Meißner, Golak, Skibinski, Witala; work in progress

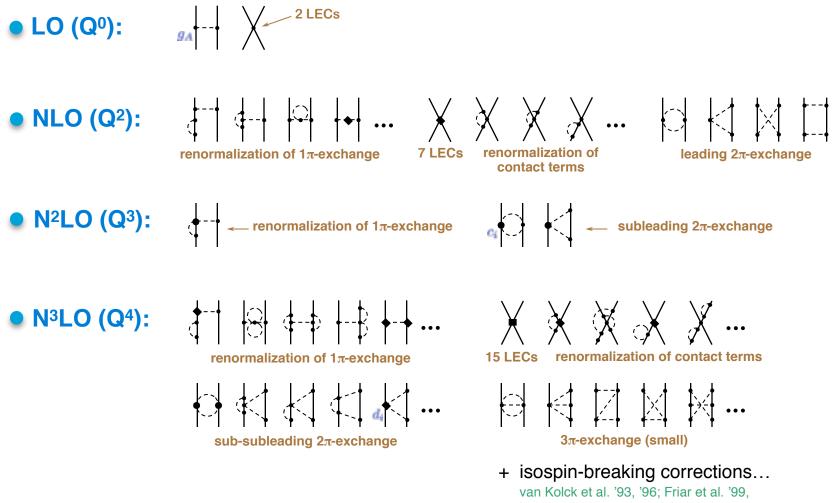
Reliable estimation of theoretical uncertainties

is needed in order to test chiral dynamics in nuclear systems, identify/ resolve possible puzzles (is A_y-puzzle a real puzzle?), make reliable predictions and guide new experiments



Nucleon-nucleon force up to N³LO

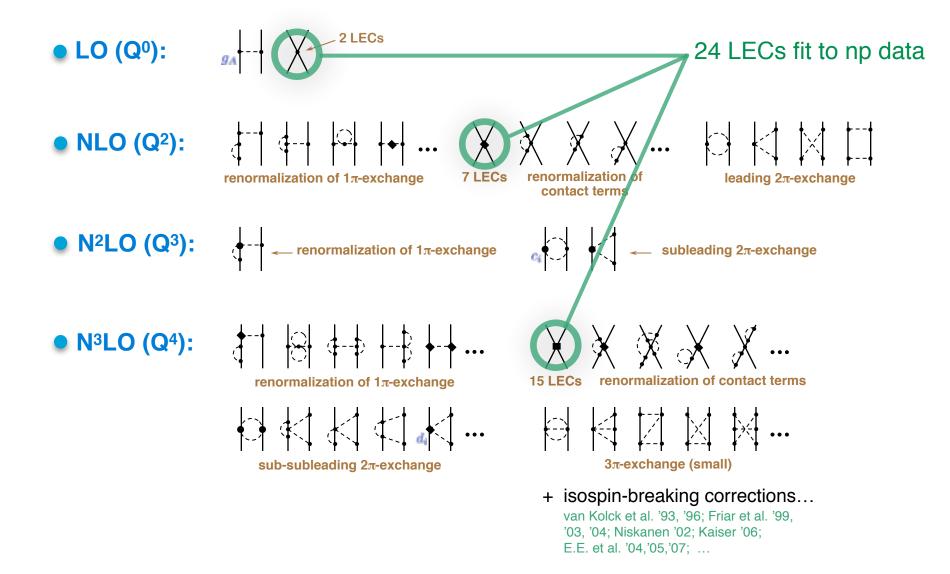
Ordonez et al. '94; Friar & Coon '94; Kaiser et al. '97; E.E. et al. '98, '03; Kaiser '99-'01; Higa, Robilotta '03; ...



'03, '04; Niskanen '02; Kaiser '06; E.E. et al. '04,'05,'07; ...

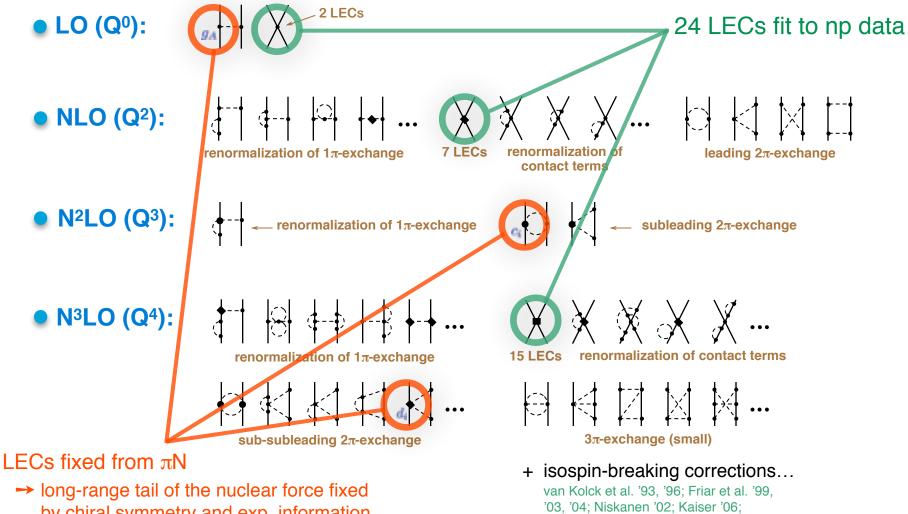
Nucleon-nucleon force up to N³LO

Ordonez et al. '94; Friar & Coon '94; Kaiser et al. '97; E.E. et al. '98, '03; Kaiser '99-'01; Higa, Robilotta '03; ...



Nucleon-nucleon force up to N³LO

Ordonez et al. '94; Friar & Coon '94; Kaiser et al. '97; E.E. et al. '98, '03; Kaiser '99-'01; Higa, Robilotta '03; ...



E.E. et al. '04,'05,'07; ...

by chiral symmetry and exp. information on the πN system

Low-energy constants

• **i**_{mproved}-chiral potential: adopt LECs from πN scattering without additional fine tuning (impact of the uncertainty in the LECs needs to be addressed in the future)

$$\mathcal{L}_{\pi} = \mathcal{L}_{\pi}^{(2)} + \mathcal{L}_{\pi}^{(4)} + \dots$$

$$\mathcal{L}_{\pi N} = \underbrace{\bar{N}\left(i\gamma^{\mu}D_{\mu}[\pi] - m + \frac{g_{A}}{2}\gamma^{\mu}\gamma_{5}u_{\mu}[\pi]\right)N}_{\mathcal{L}_{\pi N}^{(1)}} + \underbrace{\sum_{i}c_{i}\bar{N}\hat{O}_{i}^{(2)}[\pi]N}_{\mathcal{L}_{\pi N}^{(2)}} + \underbrace{\sum_{i}d_{i}\bar{N}\hat{O}_{i}^{(3)}[\pi]N}_{\mathcal{L}_{\pi N}^{(3)}} + \dots$$

low operav constante

	Entem-Machleidt potential	Epelbaum-Glöckle-Meißner potential	πN scattering to leading one loop (Q ³)
$\begin{array}{c} c_{1} \\ c_{2} \\ c_{3} \\ \bar{d}_{1} + \bar{d}_{2} \\ \bar{d}_{3} \\ \bar{d}_{5} \\ \bar{d}_{14} - \bar{d}_{15} \end{array}$	$\begin{array}{c} -0.81 \\ 2.80 \\ -3.20 \\ 5.40 \\ 3.06 \\ -3.27 \\ 0.45 \\ -5.65 \end{array}$ were tuned to improve the fit	$\begin{array}{c} -0.81 \\ 3.28 \\ -3.40 \\ 3.40 \\ 3.06 \\ -3.27 \\ 0.45 \\ -5.65 \end{array}$ taken on the lower side to avoid deeply-bound states	$\begin{array}{c} -0.81\pm 0.15^b\\ 3.28\pm 0.23^c\\ -4.69\pm 1.34^b\\ 3.40\pm 0.04^b\\ 3.06\pm 0.21^c\\ -3.27\pm 0.73^c\\ 0.45\pm 0.42^c\\ -5.65\pm 0.41^c\end{array}$

2 [LO] + 7 [NLO, N²LO] + 15 [N³LO] contact interactions fitted to np phase shifts

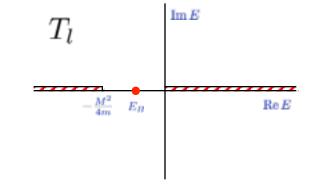
Regularization

Employ regularization which maintains the analytic structure of the amplitude

Old EM/EGM potentials

$$V_{
m long-range}^{
m reg}(\vec{p}',\,\vec{p}\,) = V_{
m long-range}(\vec{p}',\,\vec{p}\,)\,\exp\left[-rac{p^n+p'^n}{\Lambda^n}
ight]$$

affects the discontinuity across the left-hand cut (i.e. some distortions of the long-range potential)



Regularization

 $\operatorname{Im} E$

Re E

 T_l

 $-\frac{M^2}{4m}$

 E_R

Employ regularization which maintains the analytic structure of the amplitude

Old EM/EGM potentials

$$V_{\text{long-range}}^{\text{reg}}(\vec{p}', \vec{p}) = V_{\text{long-range}}(\vec{p}', \vec{p}) \exp\left[-\frac{p^n + p'^n}{\Lambda^n}\right]$$

affects the discontinuity across the left-hand cut (i.e. some distortions of the long-range potential)

New potentials

$$V_{\text{long-range}}^{\text{reg}}(\vec{r}) = V_{\text{long-range}}(\vec{r}) f_{\text{reg}}\left(\frac{r}{R}\right)$$

$$V_{\text{long-range}}^{\text{reg}}(\vec{q}) = V_{\text{long-range}}(\vec{q}) - \int d^3 l \ V_{\text{long-range}}(\vec{q} - \vec{l}) \ \tilde{f}_{\text{reg}}(\vec{l})$$

manifestly short-range

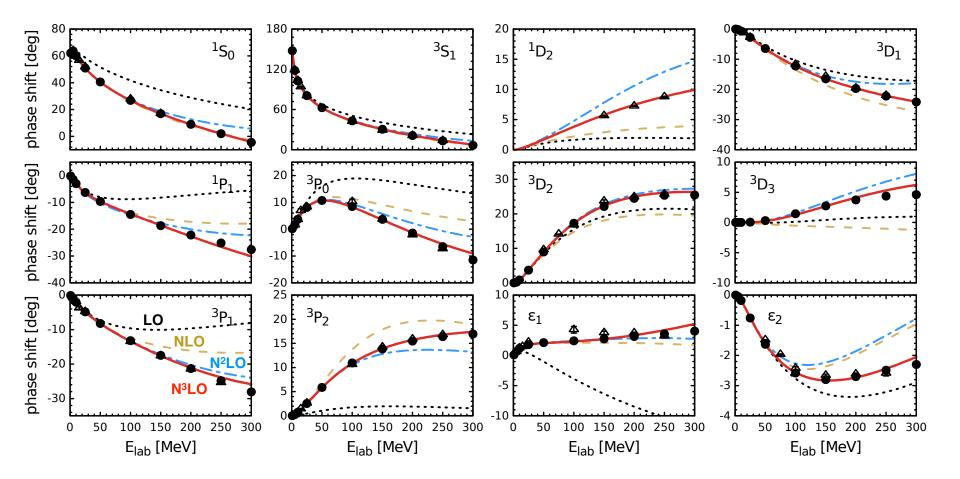
Advantages:

No distortion of the long-range potential — better performance (at high energy) No need for an additional spectral function regularization in the TPEP

Choice of cutoff R: chiral expansion of π -exchanges breaks down for r ~ 0.8 fm Baru et al.'12 it is natural to choose R ~ 1 fm

(Preliminary) Results

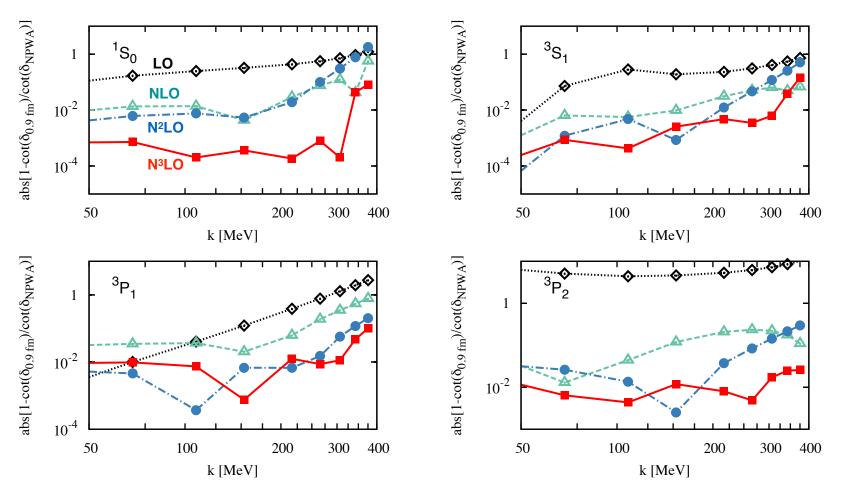
NN phase shifts order by order



results are shown for the hardest cutoff R = 0.9 fm

NN phase shifts order by order

Absolute error in selected phase shifts (Lepage plots)



results are shown for the hardest cutoff R = 0.9 fm

Residual R-dependence probes the size of neglected contact terms:

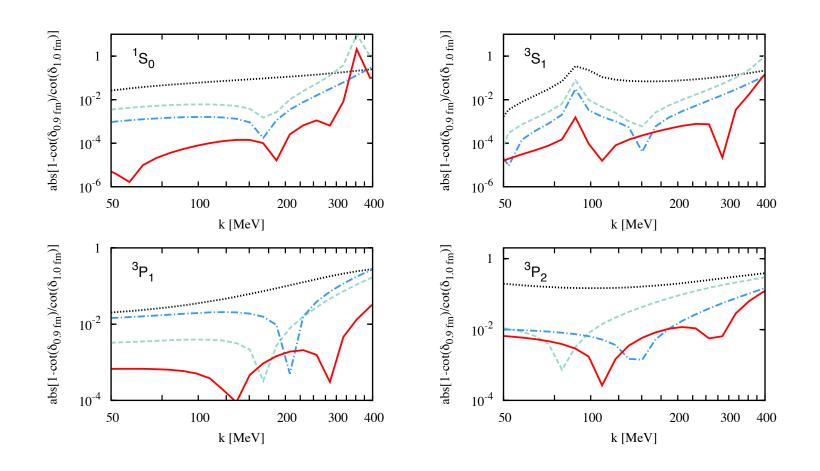
LO: neglected order-Q² contact terms [NLO] NLO, N²LO: neglected order-Q⁴ contact terms [N³LO] N³LO: neglected order-Q⁶ contact terms [N⁵LO]

should decrease from LO to NLO(N²LO) to N³LO

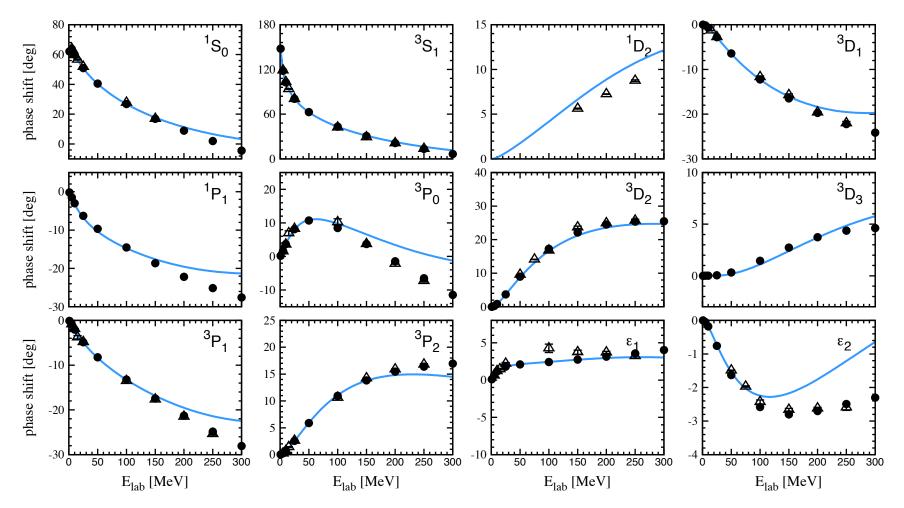
Residual R-dependence probes the size of neglected contact terms:

LO: neglected order-Q² contact terms [NLO] NLO, N²LO: neglected order-Q⁴ contact terms [N³LO] N³LO: neglected order-Q⁶ contact terms [N⁵LO]

should decrease from LO to NLO(N²LO) to N³LO

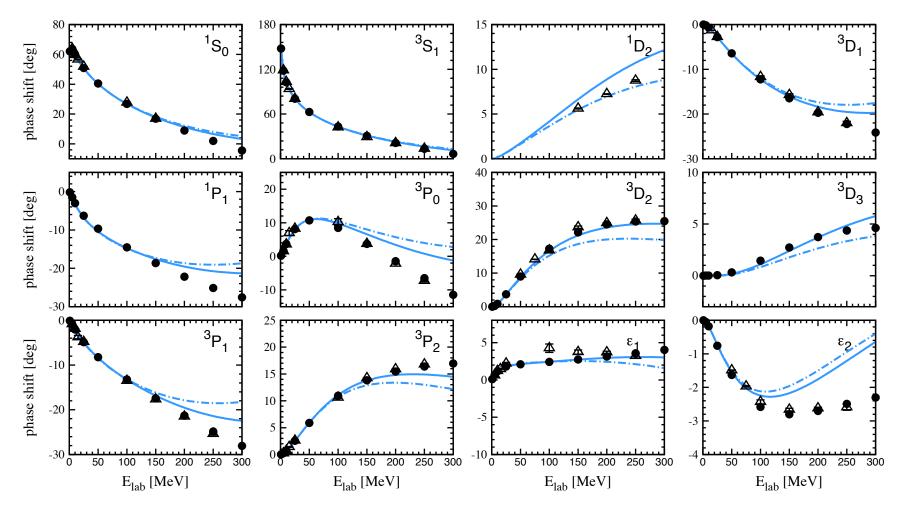


Neutron-proton phase shifts



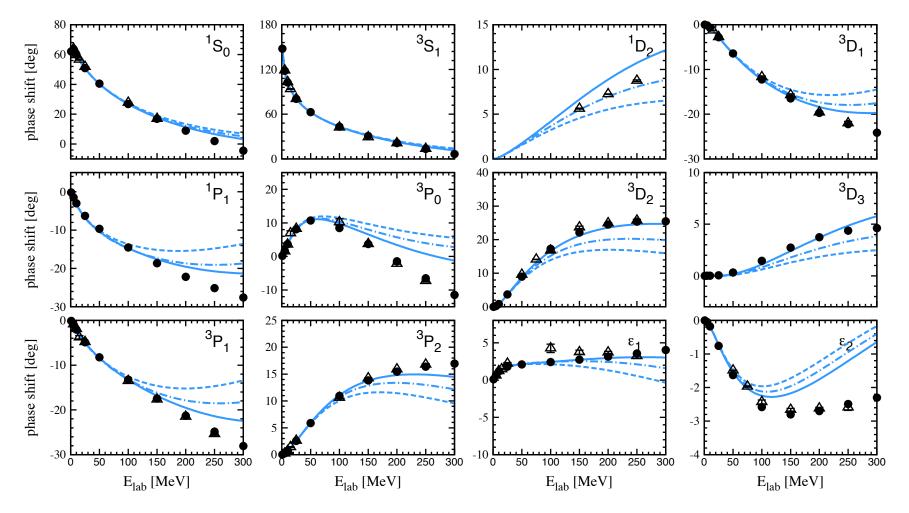
 $R \sim 0.9 \text{ fm} [E_{lab} \sim 410 \text{ MeV}]$

Neutron-proton phase shifts



 $R \sim 0.9 \text{ fm} [E_{lab} \sim 410 \text{ MeV}] \qquad R \sim 1.0 \text{ fm} [E_{lab} \sim 330 \text{ MeV}]$

Neutron-proton phase shifts

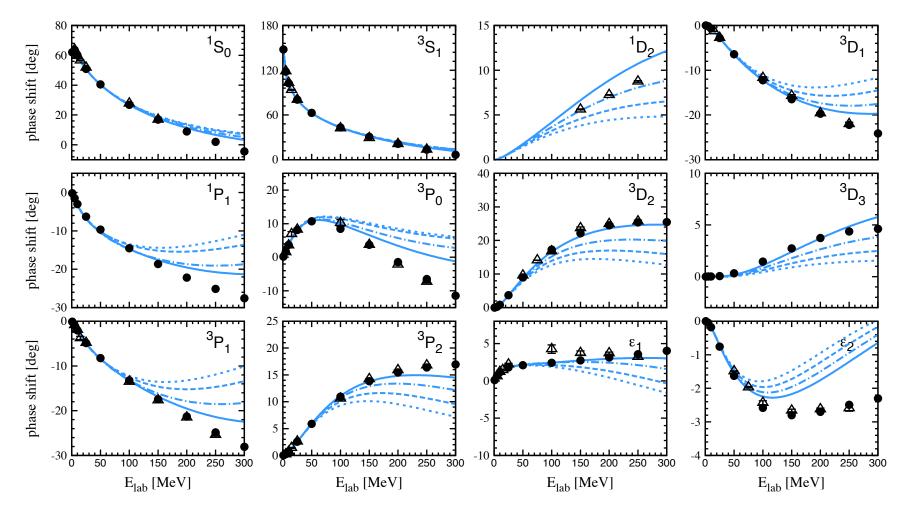


R ~ 0.9 fm [E_{lab} ~ 410 MeV]

R ~ 1.0 fm [E_{lab} ~ 330 MeV]

R ~ 1.1 fm [E_{lab} ~ 270 MeV]

Neutron-proton phase shifts



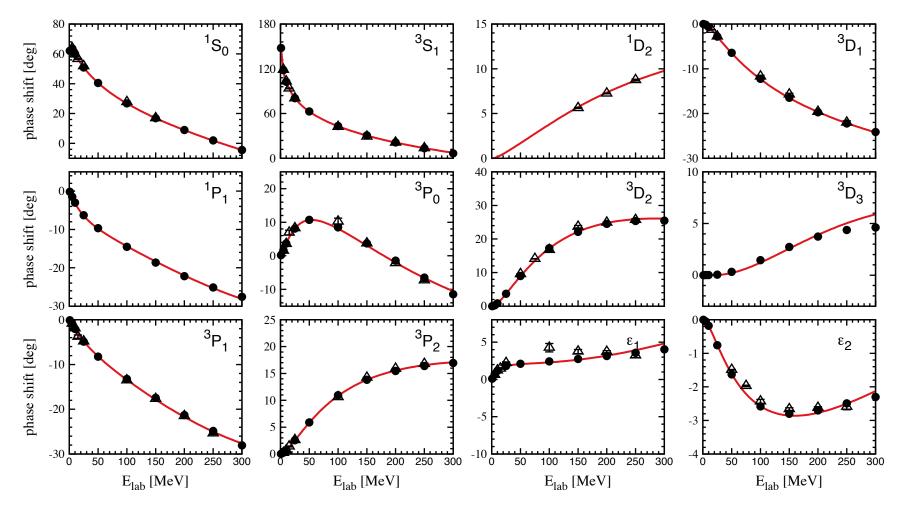
 $R \sim 0.9 \text{ fm} [E_{lab} \sim 410 \text{ MeV}]$

R ~ 1.0 fm [E_{lab} ~ 330 MeV]

R ~ 1.1 fm [E_{lab} ~ 270 MeV]

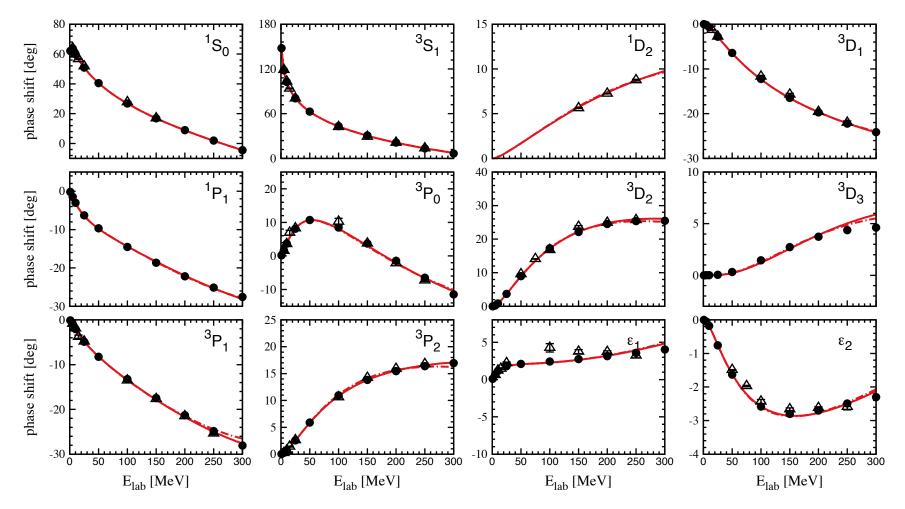
R ~ 1.2 fm [E_{lab} ~ 230 MeV]

Neutron-proton phase shifts



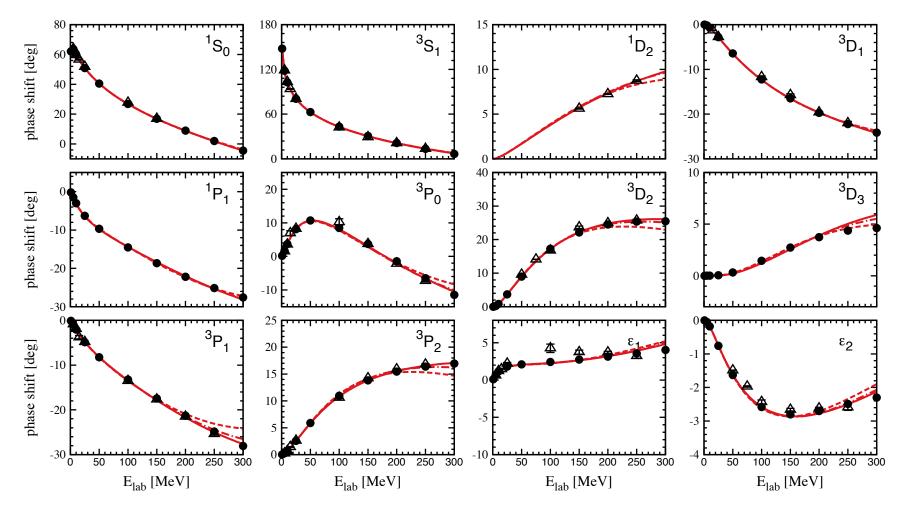
 $R \sim 0.9 \text{ fm} [E_{lab} \sim 410 \text{ MeV}]$

Neutron-proton phase shifts



 $R \sim 0.9 \text{ fm} [E_{lab} \sim 410 \text{ MeV}] \qquad R \sim 1.0 \text{ fm} [E_{lab} \sim 330 \text{ MeV}]$

Neutron-proton phase shifts

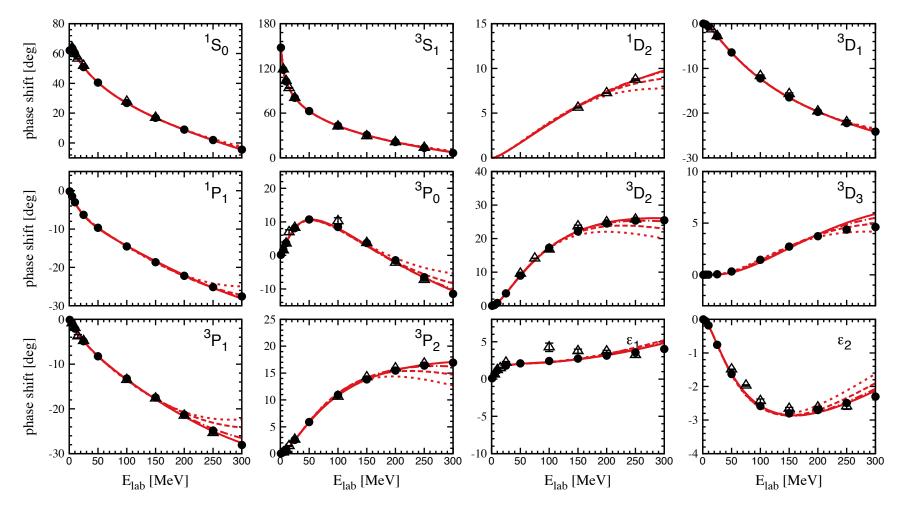


 $R \sim 0.9 \text{ fm} [E_{lab} \sim 410 \text{ MeV}]$

R ~ 1.0 fm [E_{lab} ~ 330 MeV]

R ~ 1.1 fm [E_{lab} ~ 270 MeV]

Neutron-proton phase shifts



 $R \sim 0.9 \text{ fm} [E_{lab} \sim 410 \text{ MeV}]$

R ~ 1.0 fm [E_{lab} ~ 330 MeV]

R ~ 1.1 fm [E_{lab} ~ 270 MeV]

R ~ 1.2 fm [E_{lab} ~ 230 MeV]

Quantification of **Theoretical Uncertainties**

Theoretical uncertainties

Sources of uncertainty:

- Uncertainty in NN PWA used as input to fix contact interactions (very small)
- Uncertainty in the knowledge of πN LECs
- Uncertainty due to truncation of the chiral expansion at a given order

Often estimated by means of a cutoff variation. However...

- underestimates the uncertainty at NLO and N³LO
- depends on the chosen range of cutoffs which in practice is rather restricted
- softer cutoffs Λ overestimate the true uncertainty (expansion in Q/ Λ)

→ does not provide a reliable way to estimate theoretical uncertainty

Theoretical uncertainties

Sources of uncertainty:

- Uncertainty in NN PWA used as input to fix contact interactions (very small)
- Uncertainty in the knowledge of πN LECs
- Uncertainty due to truncation of the chiral expansion at a given order

Often estimated by means of a cutoff variation. However...

- underestimates the uncertainty at NLO and N³LO
- depends on the chosen range of cutoffs which in practice is rather restricted
- softer cutoffs Λ overestimate the true uncertainty (expansion in Q/ Λ)

→ does not provide a reliable way to estimate theoretical uncertainty

Theoretical uncertainty by estimating the size of higher-order contributions (standard in ChPT)

Expansion parameter: Q =

momenta of pions and nucleons or $M_\pi \thicksim 140 \; \text{MeV}$

lowest hard scale [i.e. Λ]

Neutron-proton scattering

 $E_{lab} = 25 \text{ MeV } [p = 108 \text{ MeV}]$ $R = 0.9 \text{ fm } [\Lambda = 440 \text{ MeV}]: \qquad \sigma_{tot} = 396 \quad -15 \quad -1 \quad +0 = 380 \text{ mbarn}$ $Q \sim 0.3 \rightarrow \text{ expect: } \sim 40 \quad \sim 12 \quad \sim 4$

Neutron-proton scattering

 $E_{lab} = 25 \text{ MeV } [p = 108 \text{ MeV}]$ $R = 0.9 \text{ fm } [\Lambda = 440 \text{ MeV}]: \quad \sigma_{tot} = 396 \quad -15 \quad -1 \quad +0 = 380 \text{ mbarn}$ $Q \sim 0.3 \quad \rightarrow \text{ expect:} \quad \sim 40 \quad \sim 12 \quad \sim 4$ $E_{lab} = 200 \text{ MeV } [p = 306 \text{ MeV}]$ $R = 0.9 \text{ fm } [\Lambda = 440 \text{ MeV}]: \quad \sigma_{tot} = 35 \quad +15 \quad -7 \quad +0 = 43 \text{ mbarn}$ $Q \sim 0.7 \quad \rightarrow \text{ expect:} \quad \sim 17 \quad \sim 12 \quad \sim 8$

Neutron-proton scattering

 $\begin{array}{c} \textbf{E}_{lab} = \textbf{25 MeV} ~ [\textbf{p} = \textbf{108 MeV}] \\ R = 0.9 ~ \text{fm} ~ [\Lambda = 440 ~ \text{MeV}]: \\ Q \sim 0.3 ~ \rightarrow ~ \text{expect:} ~ \textbf{-15} - \textbf{-1} + \textbf{-0} = \textbf{-380 mbarn} \\ Q \sim 0.3 ~ \rightarrow ~ \text{expect:} ~ \textbf{-40} ~ \textbf{-12} ~ \textbf{-4} \end{array}$ $\begin{array}{c} \textbf{E}_{lab} = \textbf{200 MeV} ~ [\textbf{p} = \textbf{306 MeV}] \\ R = 0.9 ~ \text{fm} ~ [\Lambda = 440 ~ \text{MeV}]: \\ Q \sim 0.7 ~ \rightarrow ~ \text{expect:} ~ \textbf{-17} ~ \textbf{-12} ~ \textbf{-8} \end{aligned}$ $\begin{array}{c} \textbf{R} = \textbf{1.2 ~ fm} ~ [\Lambda = 330 ~ \text{MeV}]: \\ Q \sim \textbf{-1} ~ \textbf{-15} - \textbf{-1} + \textbf{-0} = \textbf{-15} - \textbf{-1} + \textbf{-0} = \textbf{-15} + \textbf{-15} + \textbf{-15} - \textbf{-1} + \textbf{-0} = \textbf{-15} + \textbf{-15} + \textbf{-15} + \textbf{-1} + \textbf{-15} + \textbf{-15} + \textbf{-1} + \textbf{-15} +$

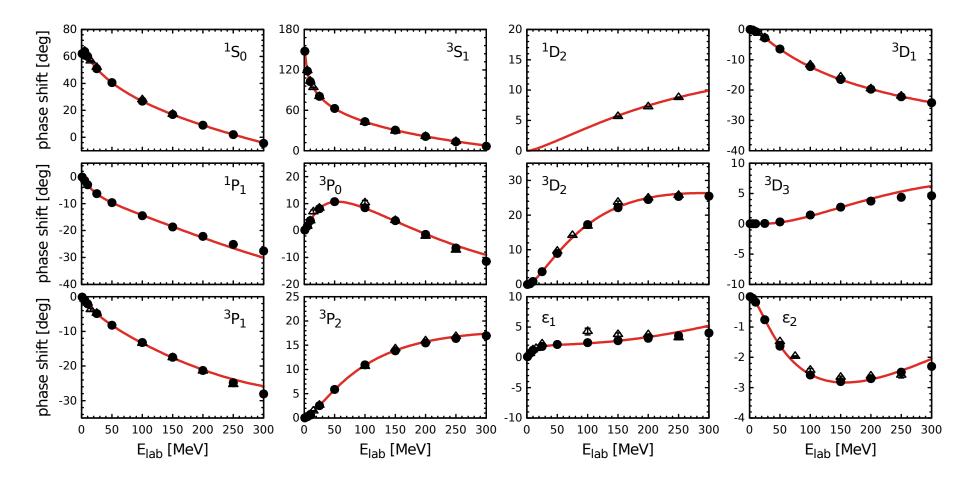
Neutron-proton scattering

 $E_{lab} = 25 \text{ MeV } [p = 108 \text{ MeV}]$ $R = 0.9 \text{ fm } [\Lambda = 440 \text{ MeV}]: \quad \sigma_{tot} = 396 - 15 - 1 + 0 = 380 \text{ mbarn}$ $Q \sim 0.3 \rightarrow \text{ expect:} \sim 40 \sim 12 \sim 4$ $E_{lab} = 200 \text{ MeV } [p = 306 \text{ MeV}]$ $R = 0.9 \text{ fm } [\Lambda = 440 \text{ MeV}]: \quad \sigma_{tot} = 35 + 15 - 7 + 0 = 43 \text{ mbarn}$ $Q \sim 0.7 \rightarrow \text{ expect:} \sim 17 \sim 12 \sim 8$ $R = 1.2 \text{ fm } [\Lambda = 330 \text{ MeV}]: \quad \sigma_{tot} = 17 + 6 + 1 + 14 = 38 \text{ mbarn}$ $Q \sim 1 \rightarrow \text{ expect no convergence!}$

Neutron-deuteron scattering

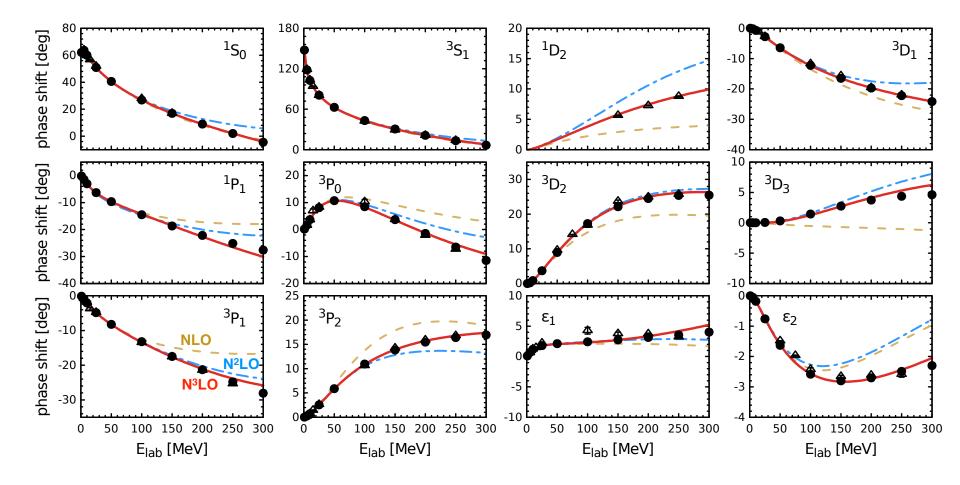
 $\begin{array}{l} \textbf{E}_{lab} = \textbf{10} \ \textbf{MeV} \ [\textbf{p} = \textbf{69} \ \textbf{MeV}] \\ \textbf{R} = 0.9 \ \textbf{fm} \ [\Lambda = 440 \ \textbf{MeV}] : \quad \sigma_{tot} = 918 + \underline{85} + \underline{2} + \underline{11} = 1046 \ \textbf{mbarn} \\ \textbf{Q} \sim 0.3 \rightarrow \textbf{expect} : \quad \sim 80 \quad \sim 24 \quad \sim 7 \end{array}$ $\begin{array}{l} \textbf{E}_{lab} = \textbf{200} \ \textbf{MeV} \ [\textbf{p} = \textbf{306} \ \textbf{MeV}] \\ \textbf{R} = 0.9 \ \textbf{fm} \ [\Lambda = 440 \ \textbf{MeV}] : \quad \sigma_{tot} = 43 + \underline{11} + \underline{8} - \underline{1} = 61 \ \textbf{mbarn} \\ \textbf{Q} \sim 0.7 \rightarrow \textbf{expect} : \quad \sim 21 \quad \sim 14 \quad \sim 10 \end{array}$ $\textbf{R} = 1.2 \ \textbf{fm} \ [\Lambda = 330 \ \textbf{MeV}] : \quad \sigma_{tot} = 20 + 10 + 4 + 20 = 54 \ \textbf{mbarn} \\ \textbf{Q} \sim 1 \rightarrow \textbf{expect} \ \textbf{no convergence!} \end{array}$

Uncertainty in phase shifts

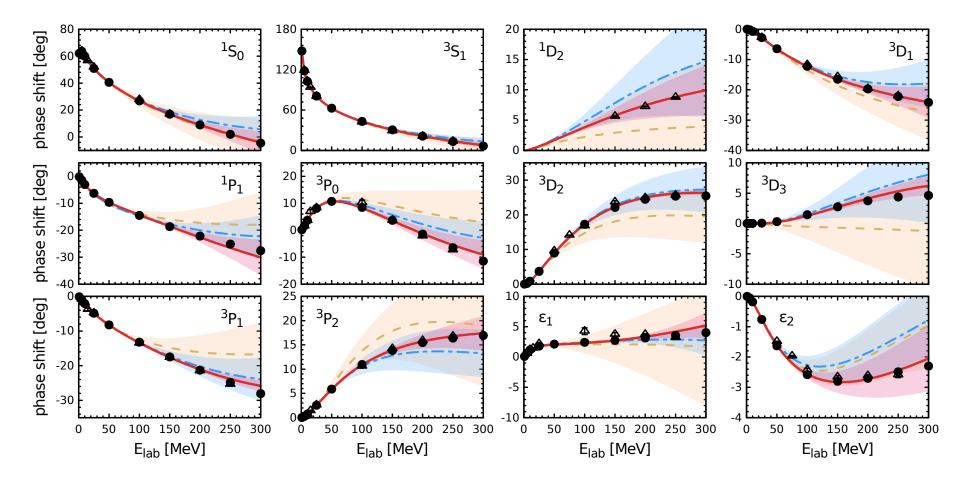


The description of phase shifts at N³LO is nearly perfect. But what is the expected theoretical uncertainty?

Uncertainty in phase shifts

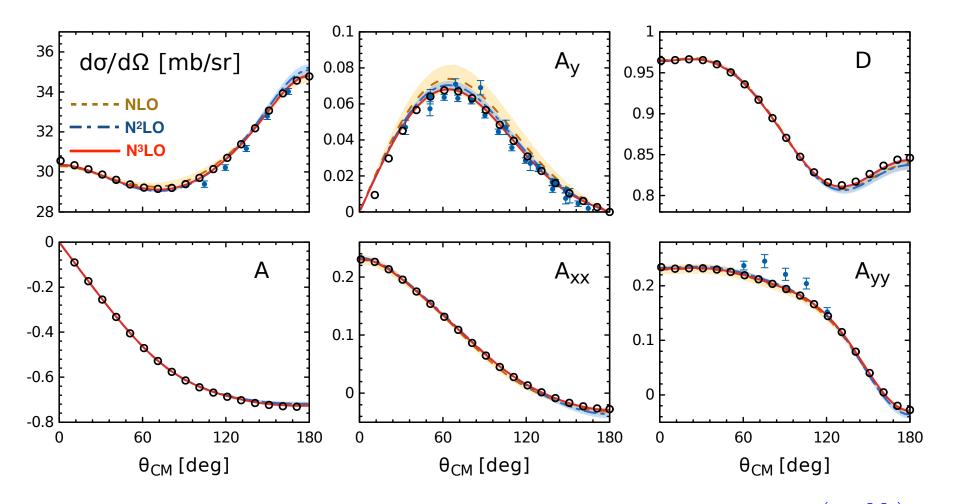


Uncertainty in phase shifts



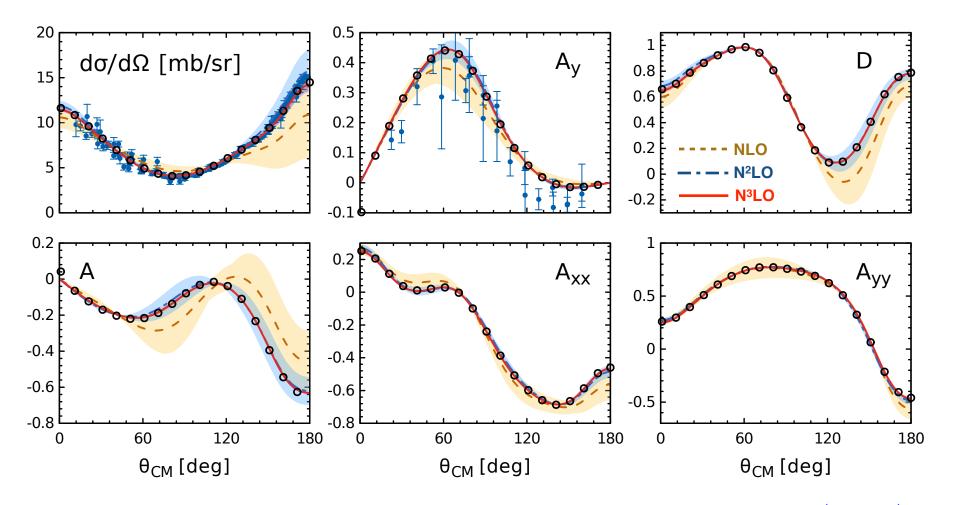
For an observable X(p), we assign: $\Delta X^{(n)}(p) = \operatorname{Abs}(X^{(n)}(p) - X^{(n-1)}(p)) \times \operatorname{Max}\left(\frac{p}{\Lambda}, \frac{M_{\pi}}{\Lambda}\right)$ to estimate the size of corrections beyond the order \mathbb{Q}^n .

NN scattering observables at E_{lab}=25 MeV



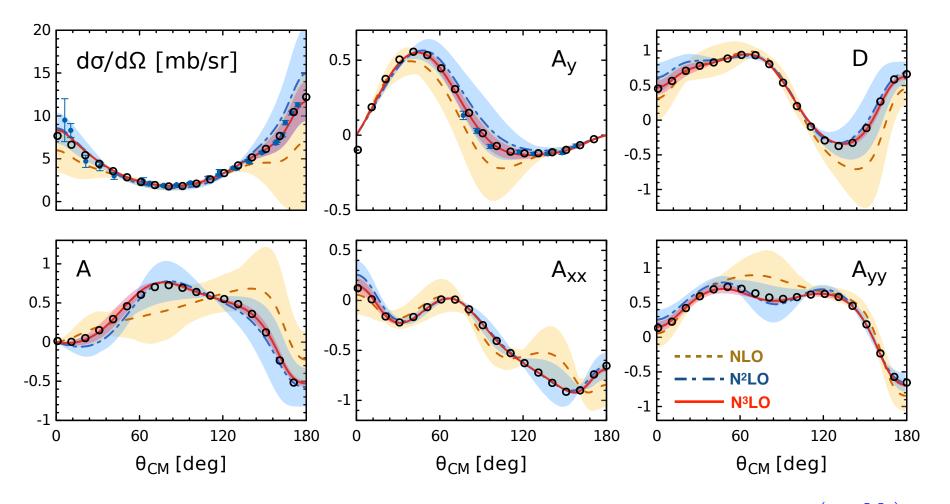
For an observable X(p), we assign: $\Delta X^{(n)}(p) = \operatorname{Abs}(X^{(n)}(p) - X^{(n-1)}(p)) \times \operatorname{Max}\left(\frac{p}{\Lambda}, \frac{M_{\pi}}{\Lambda}\right)$ to estimate the size of corrections beyond the order \mathbb{Q}^n .

NN scattering observables at E_{lab}=96 MeV



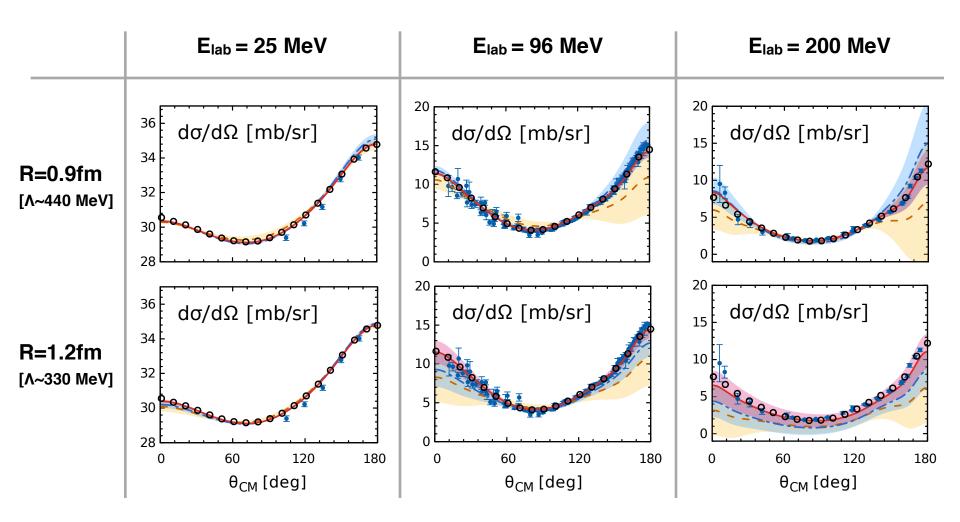
For an observable X(p), we assign: $\Delta X^{(n)}(p) = \operatorname{Abs}(X^{(n)}(p) - X^{(n-1)}(p)) \times \operatorname{Max}\left(\frac{p}{\Lambda}, \frac{M_{\pi}}{\Lambda}\right)$ to estimate the size of corrections beyond the order \mathbb{Q}^n .

NN scattering observables at E_{lab}=200 MeV



For an observable X(p), we assign: $\Delta X^{(n)}(p) = \operatorname{Abs}(X^{(n)}(p) - X^{(n-1)}(p)) \times \operatorname{Max}\left(\frac{p}{\Lambda}, \frac{M_{\pi}}{\Lambda}\right)$ to estimate the size of corrections beyond the order \mathbb{Q}^n .

NN cross section: cutoff dependence



Deuteron properties

Cutoff 0.9 fm [Λ=440 MeV]:

	NLO	N ² LO	N ³ LO	empirical
B _d (MeV)	2.20(3)	2.23(1)	2.220(3)	2.224575(9)
A _S (fm ^{-1/2})	0.877(8)	0.886(3)	0.8835(8)	0.8846(9)
η	0.0256(5)	0.0255(1)	0.0256(0)	0.0256(4)
r _d (fm)	1.968(7)	1.965(7)	1.972(2)	1.97535(85)
Q (fm²)	0.274(10)	0.270(10)	0.280(3)	0.2859(3)

Deuteron properties

Cutoff 0.9 fm [Λ=440 MeV]:

	NLO	N ² LO	N ³ LO	empirical
B _d (MeV)	2.20(3)	2.23(1)	2.220(3)	2.224575(9)
As (fm ^{-1/2})	0.877(8)	0.886(3)	0.8835(8)	0.8846(9)
η	0.0256(5)	0.0255(1)	0.0256(0)	0.0256(4)
r _d (fm)	1.968(7)	1.965(7)	1.972(2)	1.97535(85)
Q (fm²)	0.274(10)	0.270(10)	0.280(3)	0.2859(3)

Cutoff 1.2 fm [Λ=330 MeV]:

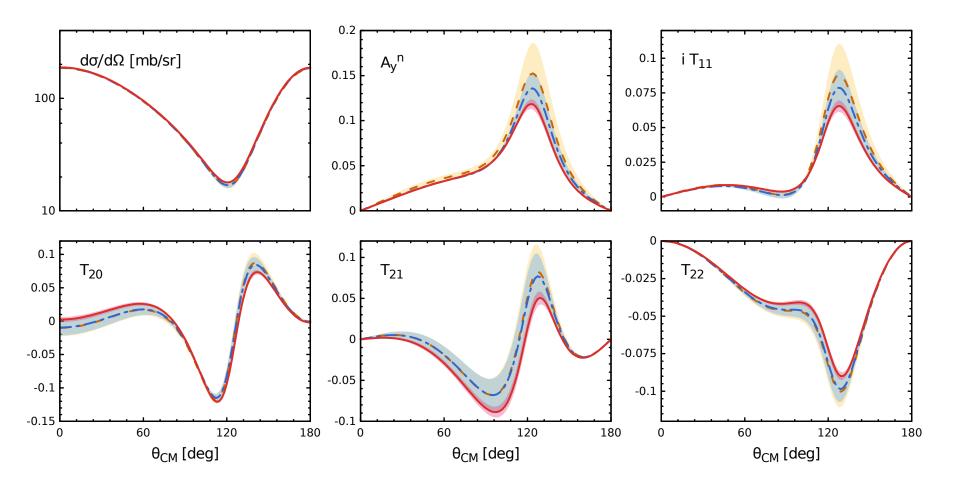
	NLO	N ² LO	N ³ LO	empirical
B _d (MeV)	2.22(1)	2.23(1)	2.218(5)	2.224575(9)
As (fm ^{-1/2})	0.882(5)	0.887(4)	0.8829(13)	0.8846(9)
η	0.0260(13)	0.0259(3)	0.0256(1)	0.0256(4)
r _d (fm)	1.964(16)	1.963(16)	1.979(7)	1.97535(85)
Q (fm²)	0.267(26)	0.265(26)	0.291(11)	0.2859(3)

estimation of higher orders: NLO, N²LO - a priori and a posteriori; N³LO - a priori

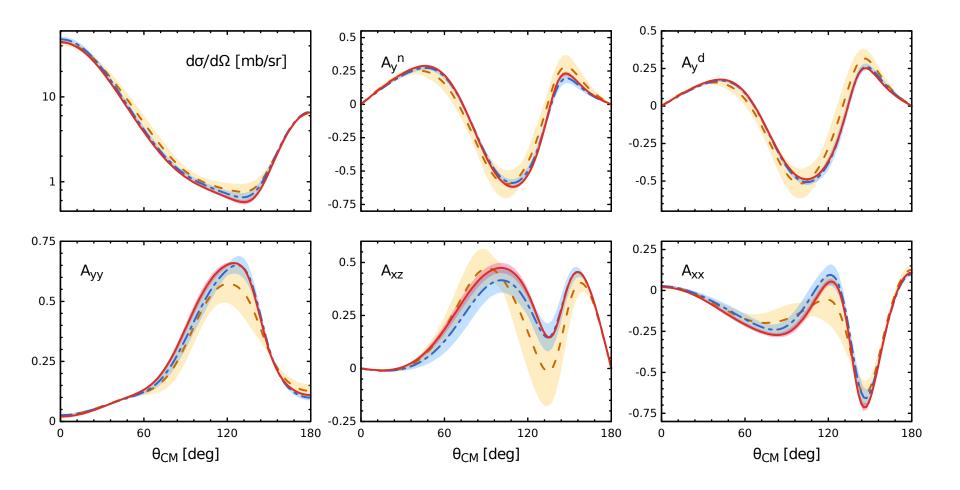
Nd elastic scattering: Where to search for 3NF effects?

Calculate 3N scattering observables using NN potential at N³LO and identify large deviations from the data (i.e. >> the uncertainty)
 → clear indications for missing 3NFs (start contributing at N²LO)!

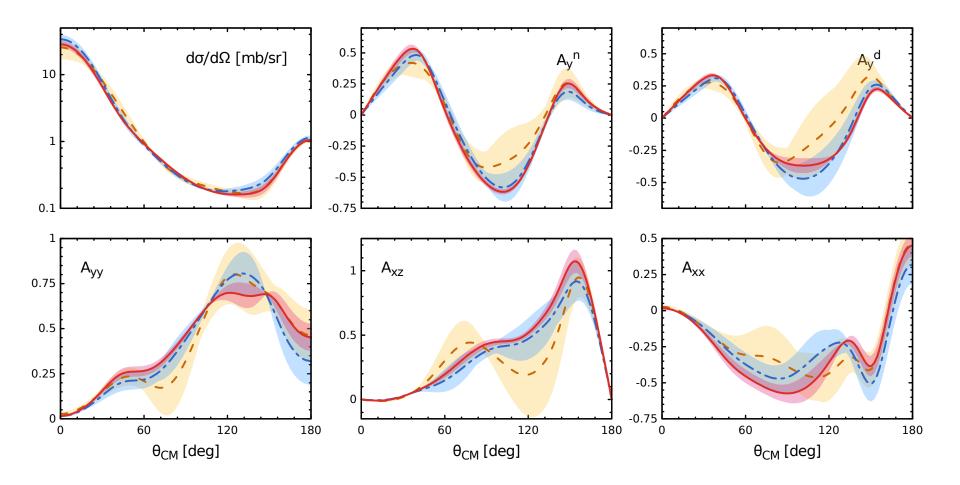
Elastic Nd scattering at E_{lab}=10 MeV: convergence



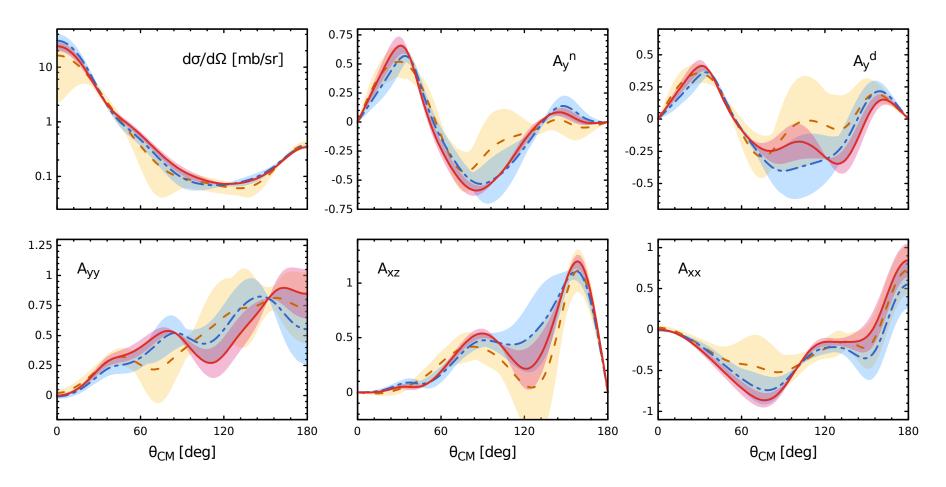
Elastic Nd scattering at E_{lab}=70 MeV: convergence



Elastic Nd scattering at Elab=135 MeV: convergence

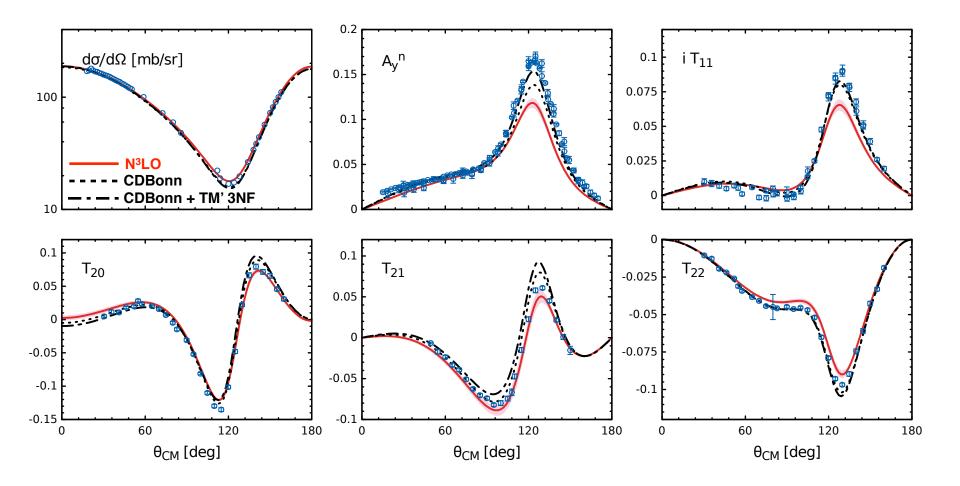


Elastic Nd scattering at E_{lab}=200 MeV: convergence



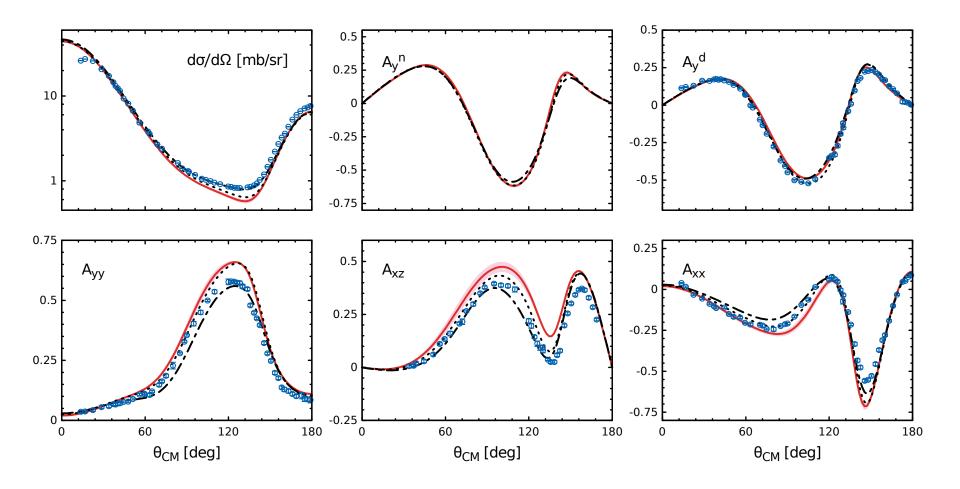
Notice: N³LO error bands are larger for Nd than for NN scattering. It is likely that the uncertainty at N³LO is overestimated (including 3NF is expected to bring N²LO and N³LO results closer to each other)

Elastic Nd scattering at Elab=10 MeV

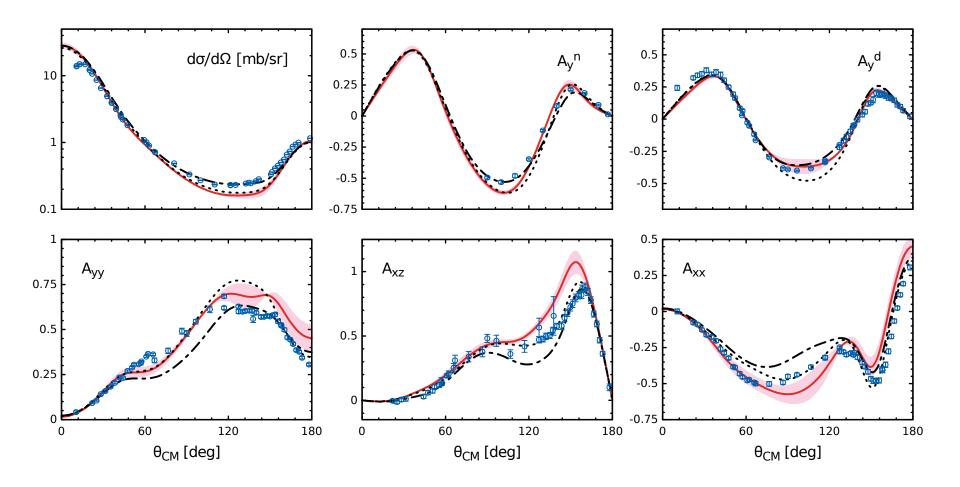


Notice: most of the data are Coulomb-corrected pd data

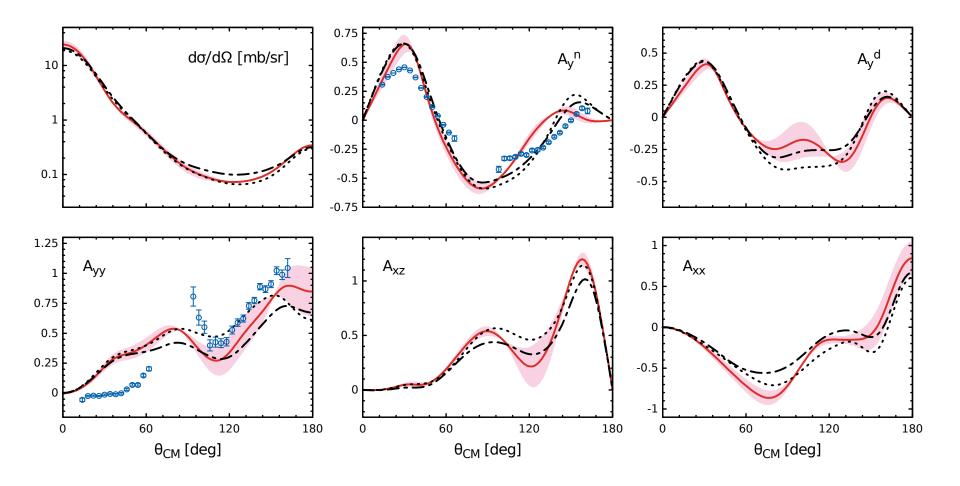
Elastic Nd scattering at Elab=70 MeV



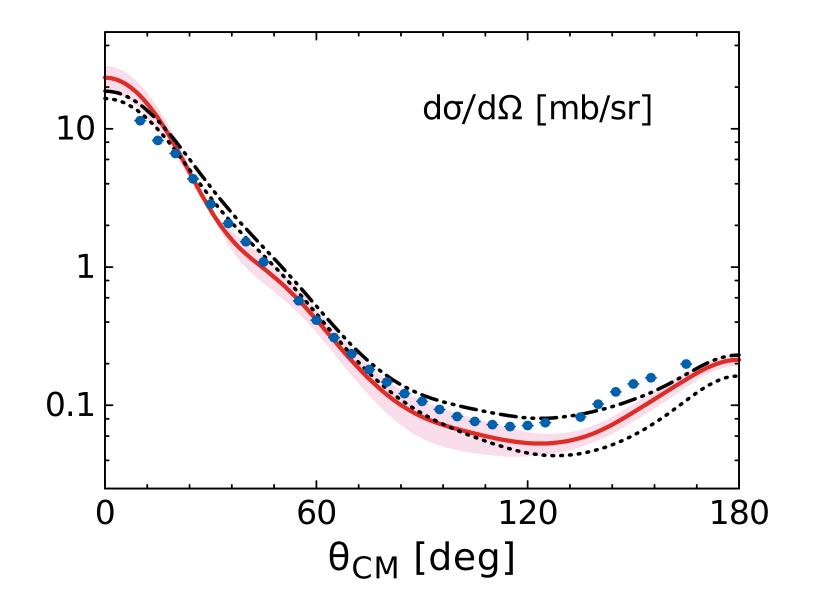
Elastic Nd scattering at Elab=135 MeV



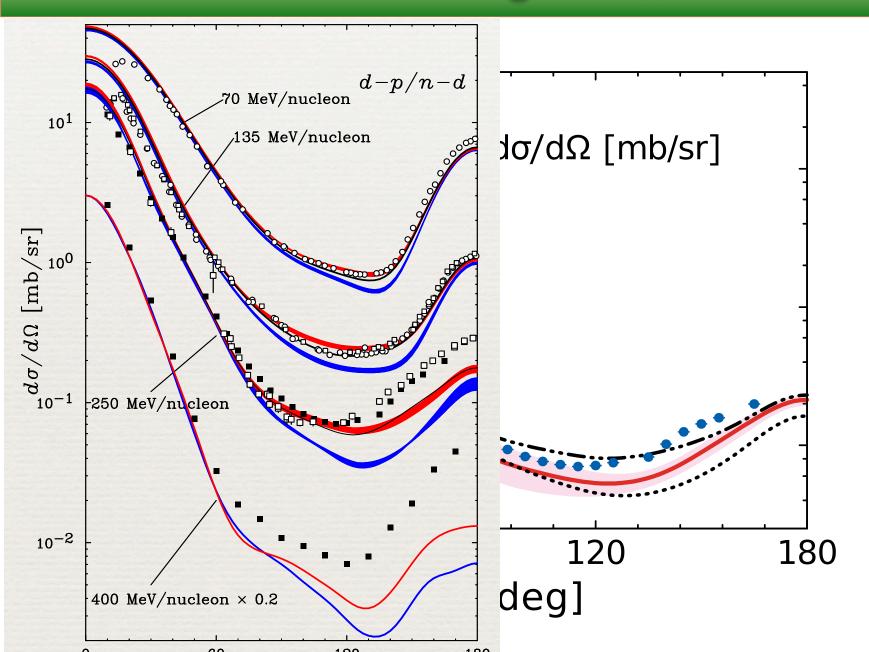
Elastic Nd scattering at Elab=200 MeV



Elastic Nd scattering at Elab=250 MeV



Elastic Nd scattering at Elab=250 MeV



Summary

A new generation of chiral NN potentials up to N³LO is being developed:

Better performance at higher energies, less sensitivity to cutoffs, no need for Spectral Function Regularization, no fine tuning for πN LECs.

Proposed a simple approach to estimate theor. uncertainty at a given order

Applicable for a single cutoff, more reliable/meaningful than cutoff variation, 2N and 3N scattering calculations show good convergence of the chiral expansion

Identified the promising cases to search for 3NF in elastic Nd scattering

Not much room for 3NF at low energy except for A_y , iT_{11} and smaller but visible deviations in T_{21} , T_{22} ; large discrepancies with the data at intermediate energies of $E_{lab} \sim 70...150$ MeV where results at N³LO are still accurate; cross sections at higher energies...

Ready for quantitative tests of the novel chiral 3NFs !