

Lattice Nuclear Physics

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

Lattice Nuclear Physics – Ulf-G. Meißner – APFB 2017, Guilin, August 27, 2017 · O < < < < > > > >

CONTENTS

- Introduction: The BIG picture
- Basics of nuclear lattice simulations
- Results from nuclear lattice simulations
- Ab initio alpha-alpha scattering
- New insights into nuclear clustering
- Summary & outlook

The BIG Picture

Lattice Nuclear Physics – Ulf-G. Meißner – APFB 2017, Guilin, August 27, 2017 · O < < / ∇ > \triangleright

WHY NUCLEAR PHYSICS?

• The matter we are made off **Universe content** visible matter 5% dark matter 27% The last frontier of the SM 134 Quarks dark energy 68% Forces S b a Proton Higgs M e V - 4 e τ μ Access to the Multiverse 50 Ve Leptons 8.2 2 B **B** = 0 2.050 2.08 Neutron Number N

Lattice Nuclear Physics – Ulf-G. Meißner – APFB 2017, Guilin, August 27, 2017 · O <

 ∇

AB INITIO NUCLEAR STRUCTURE and SCATTERING

- Nuclear structure:
 - * 3-nucleon forces
 - \star limits of stability
 - * alpha-clustering

5

- Nuclear scattering: processes relevant for nuclear astrophysics
 - \star alpha-particle scattering: ⁴He + ⁴He \rightarrow ⁴He + ⁴He
 - * triple-alpha reaction: ${}^{4}\text{He} + {}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{12}\text{C} + \gamma$
 - \star alpha-capture on carbon: ${}^{4}\text{He} + {}^{12}\text{C} \rightarrow {}^{16}\text{O} + \gamma$

THE NUCLEAR LANDSCAPE: AIMS & METHODS

- Theoretical methods:
- Lattice QCD: *A* = 0, 1, 2, ...
- NCSM, Faddeev-Yakubowsky, GFMC, ... : A = 3 16
- coupled cluster, . . .: A = 16 100
- density functional theory, . . .: $A \ge 100$
- Chiral EFT:
- provides accurate 2N, 3N and 4N forces
- successfully applied in light nuclei
 with *A* = 2, 3, 4
- combine with simulations to get to larger A

6

⇒ Chiral Nuclear Lattice Effective Field Theory

Basics of nuclear lattice simulations

for an easy intro, see: UGM, Nucl. Phys. News **24** (2014) 11 for an early review, see: D. Lee, Pr og. Part. Nucl. Phys. **63** (2009) 117 upcoming textbook, see: T. Lähde, UGM, Springer Lecture Notes in Physics

NUCLEAR LATTICE EFFECTIVE FIELD THEORY

Frank, Brockmann (1992), Koonin, Müller, Seki, van Kolck (2000), Lee, Schäfer (2004), . . . Borasoy, Krebs, Lee, UGM, Nucl. Phys. **A768** (2006) 179; Borasoy, Epelbaum, Krebs, Lee, UGM, Eur. Phys. J. **A31** (2007) 105

- new method to tackle the nuclear many-body problem
- discretize space-time $V = L_s \times L_s \times L_s \times L_t$: nucleons are point-like particles on the sites
- discretized chiral potential w/ pion exchanges and contact interactions + Coulomb
- \rightarrow see Epelbaum, Hammer, UGM, Rev. Mod. Phys. **81** (2009) 1773
- typical lattice parameters

$$p_{
m max} = rac{\pi}{a} \simeq 314\,{
m MeV}\,[{
m UV}\,{
m cutoff}]$$

• strong suppression of sign oscillations due to approximate Wigner SU(4) symmetry

E. Wigner, Phys. Rev. 51 (1937) 106; T. Mehen et al., Phys. Rev. Lett. 83 (1999) 931; J. W. Chen et al., Phys. Rev. Lett. 93 (2004) 242302

ullet physics independent of the lattice spacing for $a=1\dots 2$ fm

J. Alarcon et al., EPJA 53 (2017) 83

Lattice Nuclear Physics – Ulf-G. Meißner – APFB 2017, Guilin, August 27, 2017 · O <

TRANSFER MATRIX METHOD

- Correlation-function for A nucleons: $Z_A(\tau) = \langle \Psi_A | \exp(-\tau H) | \Psi_A \rangle$ with Ψ_A a Slater determinant for A free nucleons [or a more sophisticated (correlated) initial/final state]
- Transient energy

$$E_A(au) = -rac{d}{d au}\,\ln Z_A(au)$$

 \rightarrow ground state: $E_A^0 = \lim_{\tau \to \infty} E_A(\tau)$

• Exp. value of any normal–ordered operator \mathcal{O}

$$Z_A^{\mathcal{O}} = raket{\Psi_A} \exp(- au H/2) \, \mathcal{O} \, \exp(- au H/2) \ket{\Psi_A}$$

$$\lim_{ au o \infty} \, rac{Z^{\mathcal{O}}_A(au)}{Z_A(au)} = \langle \Psi_A | \mathcal{O} \, | \Psi_A
angle \, ,$$

L

а

Euclidean time

 $\cdot \circ \triangleleft < \land \lor >$

Τf

τί

Euclidean time

AUXILIARY FIELD METHOD

• Represent interactions by auxiliary fields [Gaussian quadrature]:

Lattice Nuclear Physics – Ulf-G. Meißner – APFB 2017, Guilin, August 27, 2017 · O < < \land \bigtriangledown > \triangleright •

CONFIGURATIONS

⇒ all *possible* configurations are sampled
 ⇒ preparation of *all possible* initial/final states
 ⇒ *clustering* emerges *naturally*

COMPUTATIONAL EQUIPMENT

- Present = JUQUEEN (BlueGene/Q)
- Soon = GPU-coding (QBiG, TITAN, ...)

Lattice: some results

Epelbaum, Krebs, Lähde, Lee, Luu, UGM, Rupak + post-docs + students

Lattice Nuclear Physics – Ulf-G. Meißner – APFB 2017, Guilin, August 27, 2017 · O < < / ∇ > \triangleright (

FIXING PARAMETERS and FIRST RESULTS

Epelbaum, Krebs, Lee, UGM, Phys. Rev. Lett. 104 (2010) 142501; Eur. Phys. J. A 45 (2010) 335; ...

some groundstate energies and differences [NNLO, 11+2 LECs]

• promising results \Rightarrow uncertainties down to the 1% level

• excited states more difficult \Rightarrow projection MC method + triangulation

Lattice Nuclear Physics – Ulf-G. Meißner – APFB 2017, Guilin, August 27, 2017 · O < < \land \bigtriangledown > \triangleright •

A SHORT HISTORY of the HOYLE STATE

• Heavy element generation in massive stars: triple- α process

Bethe 1938, Öpik 1952, Salpeter 1952, Hoyle 1954, ...

 ${}^{4}\text{He} + {}^{4}\text{He} \rightleftharpoons {}^{8}\text{Be}$ ${}^{8}\text{Be} + {}^{4}\text{He} \rightleftharpoons {}^{12}\text{C}^{*} \rightarrow {}^{12}\text{C} + \gamma$ ${}^{12}\text{C} + {}^{4}\text{He} \rightleftharpoons {}^{16}\text{O} + \gamma$

• Hoyle's contribution: calculation of the relative abundances of ⁴He, ¹²C and ¹⁶O \Rightarrow need a resonance close to the ⁸Be + ⁴He threshold at $E_R \simeq 0.37$ MeV \Rightarrow this corresponds to a $J^P = 0^+$ excited state 7.7 MeV above the g.s.

- a corresponding state was experimentally confirmed at Caltech at $E E(g.s.) = 7.653 \pm 0.008$ MeV Dunbar et al. 1953, Cook et al. 1957
- still on-going experimental activity, e.g. EM transitions at SDALINAC M. Chernykh et al., Phys. Rev. Lett. 98 (2007) 032501
- an enigma to ab initio nuclear theory until 2011

BREAKTHROUGH: SPECTRUM of CARBON-12

Epelbaum, Krebs, Lee, UGM, Phys. Rev. Lett. 106 (2011) 192501 Epelbaum, Krebs, Lähde, Lee, UGM, Phys. Rev. Lett. 109 (2012) 252501

• After 8 • 10⁶ hrs JUGENE/JUQUEEN (and "some" human work)

16

RESULTS from LATTICE NUCLEAR EFT

- □ Lattice EFT calculations for A=3,4,6,12 nuclei, PRL 104 (2010) 142501
- □ Ab initio calculation of the Hoyle state, PRL 106 (2011) 192501
- □ Structure and rotations of the Hoyle state, PRL 109 (2012) 142501
- Validity of Carbon-Based Life as a Function of the Light Quark Mass PRL 110 (2013) 142501
- □ Ab initio calculation of the Spectrum and Structure of ¹⁶O, PRL 112 (2014) 142501
- □ Ab initio alpha-alpha scattering, Nature 528 (2015) 111
- □ Nuclear Binding Near a Quantum Phase Transition, PRL 117 (2016) 132501
- □ Ab initio calculations of the isotopic dependence of nuclear clustering, arXiv:1702.05177, PRL (2017) in print

Ab initio calculation of α - α scattering

Elhatisari, Lee, Rupak, Epelbaum, Krebs, Lähde, Luu, UGM, Nature **528** (2015) 111 [arXiv:1506.03513]

Lattice Nuclear Physics – Ulf-G. Meißner – APFB 2017, Guilin, August 27, 2017 · O < < / ∇ > \triangleright •

NUCLEUS–NUCLEUS SCATTERING on the LATTICE

- Processes involving α-particles and α-type nuclei comprise a major part of stellar nucleosynthesis, and control the production of certain elements in stars
- Ab initio calculations of scattering and reactions suffer from computational scaling with the number of nucleons in the clusters

Lattice EFT computational scaling $\Rightarrow (A_1 + A_2)^2$

Rupak, Lee, Phys. Rev. Lett. **111** (2013) 032502 Pine, Lee, Rupak, Eur. Phys. J. A **49** (2013) 151 Elhatisari, Lee, Phys. Rev. C **90** (2014) 064001 Elhatisari et al., Phys.Rev. C **92** (2015) 054612 Elhatisari, Lee, UGM, Rupak, Eur. Phys. J. A **52** (2016) 174

ADIABATIC PROJECTION METHOD

• Basic idea to treat scattering and inelastic reactions: split the problem into two parts

First part:

use Euclidean time projection to construct an *ab initio* low-energy cluster Hamiltonian, called the **adiabatic Hamiltonian**

Second part:

compute the two-cluster scattering phase shifts or reaction amplitudes using the adiabatic Hamiltonian

Lattice Nuclear Physics – Ulf-G. Meißner – APFB 2017, Guilin, August 27, 2017 · O < < \land \bigtriangledown >

ADIABATIC PROJECTION METHOD II

- Construct a low-energy effective theory for clusters
- Use initial states parameterized by the relative separation between clusters

 $|ec{R}
angle = \sum_{ec{r}} |ec{r} + ec{R}
angle \otimes ec{r}$

 project them in Euclidean time with the chiral EFT Hamiltonian H

$$ert ec{R}
angle_{ au} = \exp(-H au) ert ec{R}
angle$$

- \rightarrow "dressed cluster states" (polarization, deformation, Pauli)
- Adiabatic Hamiltonian (requires norm matrices)

$$[H_{ au}]_{ec{R}ec{R}'}={}_{ au}\langleec{R}|H|ec{R}'
angle_{ au}$$

 $\cdot \circ \triangleleft < \land \lor >$

ADIABATIC HAMILTONIAN plus COULOMB

Lattice Nuclear Physics – Ulf-G. Meißner – APFB 2017, Guilin, August 27, 2017 • O < < \land \bigtriangledown > \triangleright •

PHASE SHIFTS

• Same NNLO Lagrangian as used for the study of ¹²C and ¹⁶O [only stat. errors]

Data: Afzal et al., Rev. Mod. Phys. 41 (1969) 247

Lattice Nuclear Physics – Ulf-G. Meißner – APFB 2017, Guilin, August 27, 2017 • O < < \land \bigtriangledown > \triangleright •

New insights into nuclear clustering

Elhatisari, Epelbaum, Krebs, Lähde, Lee, Li, Lu, UGM, Rupak [arXiv:1702.05117]

Lattice Nuclear Physics – Ulf-G. Meißner – APFB 2017, Guilin, August 27, 2017 · O < < \land \bigtriangledown > \triangleright •

CLUSTERING in NUCLEI

Introduced theoretically by Wheeler already in 1937:

John Archibald Wheeler, "Molecular Viewpoints in Nuclear Structure," Physical Review 52 (1937) 1083

Ikeda, Horiuchi, Freer, Schuck, Röpke, Khan, Zhou, Iachello, ...

\Rightarrow can we understand this phenomenon from *ab initio* calculations?

 $\cdot \circ \triangleleft < \land \nabla$ Lattice Nuclear Physics – Ulf-G. Meißner – APFB 2017, Guilin, August 27, 2017

EARLIER RESULTS on NUCLEAR CLUSTERING

• Already a number of intriguing results on clustering:

Ab initio calculation of the spectrum and structure of ¹²C (esp. the Hoyle state) Ab initio calculation of the spectrum and structure of ¹⁶O Ground state energies of α -type nuclei up to ²⁸Si within 1% Ab initio calculation of α - α scattering Quantum phase transition from Bose gas of α 's to nuclear liquid for α -type nuclei

• However: when adding extra neutrons/protons, the precision quickly deteriorates due to sign oscillations

 New LO action with smeared SU(4) local+non-local symmetric contact interactions & smeared one-pion exchange

$$egin{aligned} a_{ ext{NL}}(ext{n}) &= a(ext{n}) + s_{ ext{NL}} \sum_{\langle ext{n'} ext{n}
angle} a(ext{n'}) \ a_{ ext{NL}}^{\dagger}(ext{n}) &= a^{\dagger}(ext{n}) + s_{ ext{NL}} \sum_{\langle ext{n'} ext{n}
angle} a^{\dagger}(ext{n'}) \end{aligned}$$

Lattice Nuclear Physics – Ulf-G. Meißner – APFB 2017, Guilin, August 27, 2017 · O < < / ∇ > > • •

GROUND STATE ENERGIES

• Fit 3 parameters to average NN S-wave scattering length and effective range and α - α S-wave scattering length [higher orders in the works]

 \rightarrow predict g.s. energies of H, He, Be, C and O isotopes \rightarrow quite accurate (LO)

PROBING NUCLEAR CLUSTERING

• Local densities on the lattice: $ho({
m n})$, $ho_p({
m n})$, $ho_n({
m n})$

• Probe of alpha clusters: $ho_4 = \sum_n :
ho^4(n)/4!:$

- Another probe for Z=N= even nuclei: $ho_3=\sum_{\mathrm{n}}:
 ho^3(\mathrm{n})/3!:$
- ρ_4 couples to the center of the α -cluster while ρ_3 gets contributions from a wider portion of the alpha-particle wave function
- Both ho_3 and ho_4 depend on the regulator, a, but not on the nucleus
- The ratios $\rho_3/\rho_{3,\alpha}$ and $\rho_4/\rho_{4,\alpha}$ free of short-distance ambiguities and model-independent
- $ho_3/
 ho_{3,lpha}$ measures the effective number of alpha-cluster N_lpha
- \Rightarrow Any deviation from N_{α} = integer measures the entanglement of the α -clusters in a given nucleus

PROBING NUCLEAR CLUSTERING

• ρ_3 -entanglement of the α -clusters:

$$\left(rac{\Delta^{
ho_3}_lpha}{N_lpha} = rac{
ho_3/
ho_{3,lpha}}{N_lpha} - 1
ight)$$

Nucleus	^{4,6,8} He	^{8,10,12,14} Be	12,14,16,18,20,22C	16,18,20,22,24,26
$\Delta_lpha^{ ho_3}/N_lpha$	0.00 - 0.03	0.20 - 0.35	0.25 - 0.50	0.50 - 0.75

Lattice Nuclear Physics – Ulf-G. Meißner – APFB 2017, Guilin, August 27, 2017 · O < < / abla > b

PROBING NUCLEAR CLUSTERING

 The transition from cluster-like states in light systems to nuclear liquid-like states in heavier systems should not be viewed as a simple suppression of multi-nucleon short-distance correlations, but rather as an increasing *entanglement* of the nucleons involved in the multi-nucleon correlations.

PINHOLE ALGORITHM

- AFQMC calculations involve states that are superpositions of many different center-of-mass positions
- \rightarrow density distributions of nucleons can not be computed directly
- Insert a screen with pinholes with spin & isospin labels that allows nucleons with corresponding spin & isospin to pass = insertion of the A-body density op.:

$$egin{aligned} &
ho_{i_1,j_1,\cdots i_A,j_A}(\mathrm{n}_1,\cdots \mathrm{n}_A)\ &=:
ho_{i_1,j_1}(\mathrm{n}_1)\cdots
ho_{i_A,j_A}(\mathrm{n}_A): \end{aligned}$$

- MC sampling of the amplitude:
- Allows to measure proton and neutron distributions
- ullet Resolution scale $\sim a/A$ as cm position ${f r_{cm}}$ is an integer ${f n_{cm}}$ times a/A

PROTON and NEUTRON DENSITIES in CARBON

FORM FACTORS

- Fit charge distributions by a Wood-Saxon shape
 - \hookrightarrow get the form factor from the Fourier-transform (FT)
 - \hookrightarrow uncertainties from a direct FT of the lattice data

 \Rightarrow detailed structure studies become possible

SUMMARY & OUTLOOK

- Nuclear lattice simulations: a new quantum many-body approach
 - \rightarrow based on the successful continuum nuclear chiral EFT
 - \rightarrow a number of intriguing results already obtained
 - ightarrow clustering emerges naturally, lpha-cluster nuclei
 - \rightarrow fine-tuning in nuclear reactions can be studied
- Various bridges to lattice QCD studies need to be explored
- Many open issues can now be addressed in a truly quantitative manner
 - \rightarrow the "holy grail" of nuclear astrophysics ⁴He+¹²C \rightarrow ¹⁶O + γ Fowler (1983)
 - \rightarrow strangeness nuclear physics using the **impurity MC** method

Bour, Lee, UGM, Phys. Rev. Lett. **115** (2015) 185301 \rightarrow slide

 \rightarrow and much more \hookrightarrow stay tuned

UTLOOK: HYPERNUCLEI

- Naive extension to include hyperons: sign problem to severe
- way out: treat the hyperon as an **impurity** in a bath (background) of the nucleons
- \hookrightarrow using the impurity MC algorithm Bour, Lee, UGM, PRL 115 (2015) 185301 Elhatisari, Lee, PRC 90 (2014) 064001

• Test cases: simple spin systems and the polaron in 2D & 3D

 $9|\uparrow\rangle + 1|\downarrow\rangle, L = 10^3$, zero range int.

polaron in two dimensions

