





# **CHIRAL NUCLEAR DYNAMICS**

### Ulf-G. Meißner, Univ. Bonn & FZ Jülich



– Ulf-G. Meißner, Chiral Nuclear Dynamics – SFB 634 Concl. Conf., June 2015 · O < < < < > > > > • •

### **CONTENTS**

- Short Introduction
- Continuum: New developments
- Lattice: New results
- Summary & outlook



# Short introduction

– Ulf-G. Meißner, Chiral Nuclear Dynamics – SFB 634 Concl. Conf., June 2015 · O < < < >

## NUCLEAR CHIRAL EFFECTIVE FIELD THEORY

• The silver jubilee of Weinberg's work extending chiral EFTs to nuclear physics

S. Weinberg,
"Nuclear forces from chiral Lagrangians,"
Phys. Lett. B 251 (1990) 288 [submitted 14 August 1990].
921 citations counted in INSPIRE as of 04 June 2015
S. Weinberg,
"Effective chiral Lagrangians for nucleon - pion interactions and nuclear forces," Nucl. Phys. B 363 (1991) 3 [submitted 02 April 1991].

887 citations counted in INSPIRE as of 04 June 2015

• after 25 years, a mature field? Epelbaum, Hammer, UGM, Rev. Mod. Phys. 81 (2009) 1773

• yes and no  $\rightarrow$  let's discuss some recent developments

# Continuum EFT: new developments



– Ulf-G. Meißner, Chiral Nuclear Dynamics – SFB 634 Concl. Conf., June 2015 · O < < / abla > abla

### NUCLEAR FORCES in CHIRAL NUCLEAR EFT

- expansion of the potential in powers of Q [small parameter]
- explains observed hierarchy of the nuclear forces



worked out and applied worked out and to be applied calculations in progress

6

– Ulf-G. Meißner, Chiral Nuclear Dynamics – SFB 634 Concl. Conf., June 2015 · O < < / abla > b

Epelbaum, Krebs, UGM, Eur. Phys. J. A 51: 53 (2015)

• new regularization of long-range physics [coordinate space cut-off]:

$$V_{
m long-range}^{
m reg}(ec{r}) = V_{
m long-range}(ec{r})f_{
m reg}\left(rac{r}{R}
ight) \ , \quad f_{
m reg} = \left[1 - \exp\left(-rac{r^2}{R^2}
ight)
ight]^6$$

 $\implies$  No distortion of the long-range potential  $\rightarrow$  better at higher energies

 $\implies$  No additional spectral function regularization in the TPEP required

 $\implies$  Study of the chiral expansion of multi-pion exchanges:  $R=0.8\cdots 1.2$  fm Baru et al., EPJ A48 (12) 69

• new way of estimation the theoretical uncertainty [before: only cut-off variations]

$$\implies$$
 Expansion parameter depending on the region:  $Q = \max\left(\frac{M_{\pi}}{\Lambda_{b}}, \frac{p}{\Lambda_{b}}\right)$ 

 $\Longrightarrow$  Breakdown scale  $\Lambda_b=600$  MeV for  $R=0.8\cdots 1.0$  fm

### **CONVERGENCE** of the CHIRAL SERIES

### • phase shifts show expected convergence [large N2LO corrections understood]



⇒ clear improvement comp. to earlier N3LO potentials [momentum space reg.] Entem, Machleidt; Epelbaum, Glöckle, UGM

### **UNCERTAINTIES**

#### • uncertainties show expected pattern



NLO N2LO N3LO

– Ulf-G. Meißner, Chiral Nuclear Dynamics – SFB 634 Concl. Conf., June 2015  $\cdot$  O  $\triangleleft$  <  $\land$   $\bigtriangledown$  >  $\triangleright$   $\bullet$ 

### **NN FORCES to FIFTH ORDER**

Epelbaum, Krebs, UGM, arXiv:1412.4623

- ullet No contact interactions at this order odd in Q
- New contributions fixed from  $\pi N$  scattering, LECs  $c_i, d_i, e_i$ :

Büttiker, Fettes, UGM, Steininger (1998-2000); Krebs, Gasparian, Epelbaum (2012)



$$\mathcal{L}_{\pi N} = \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)}(c_i) + \mathcal{L}_{\pi N}^{(3)}(d_i) + \mathcal{L}_{\pi N}^{(4)}(e_i)$$

- Three-pion exchange can be neglected
  - $\rightarrow$  explicit calculation of the dominant NLO contribution

Kaiser (2001)

 $\rightarrow$  no influence on phase shifts or deuteron properties

### PHASE SHIFTS at N4LO

 $\Rightarrow$  Precision phase shifts with small uncertainties up to  $E_{
m lab}=300\,{
m MeV}$ 



NLO N2LO N3LO N4LO

– Ulf-G. Meißner, Chiral Nuclear Dynamics – SFB 634 Concl. Conf., June 2015  $\cdot$  O  $\triangleleft$  C  $\wedge$   $\nabla$  > D  $\bullet$ 

## **EVIDENCE for THREE-NUCLEON FORCES**

• Two-nucleon system under control, three-nucleon system requires 3NFs!  $\rightarrow$  being implemented [LENPIC collaboration]





np scattering at 200 MeV

 $\theta_{CM}$  [deg]

nd scattering [2NFs only]



0

<

 $\theta_{CM}$  [deg]

**NLO** 

N<sub>2</sub>LO

N3LO

N4LO

### **MORE EVIDENCE for THREE-NUCLEON FORCES**

Binder et al. [LENPIC collaboration], arXiv:1505.07218

• Total cross section for Nd scattering [2NFs only]



• Binding energy and rms radius of <sup>4</sup>He, lowest levels in <sup>6</sup>Li [2NFs only]



– Ulf-G. Meißner, Chiral Nuclear Dynamics – SFB 634 Concl. Conf., June 2015  $\cdot$  O  $\triangleleft$  C  $\wedge$   $\nabla$  > D  $\bullet$ 

# Lattice: new results



– Ulf-G. Meißner, Chiral Nuclear Dynamics – SFB 634 Concl. Conf., June 2015 · O < < < >

## THE TOOL: NUCLEAR LATTICE SIMULATIONS

Frank, Brockmann (1992), Koonin, Müller, Seki, van Kolck (2000), Lee, Schäfer (2004), . . . Borasoy, Krebs, Lee, UGM, Nucl. Phys. **A768** (2006) 179; Borasoy, Epelbaum, Krebs, Lee, UGM, Eur. Phys. J. **A31** (2007) 105

- new method to tackle the nuclear many-body problem
- discretize space-time  $V = L_s \times L_s \times L_s \times L_t$ : nucleons are point-like fields on the sites
- discretized chiral potential w/ pion exchanges and contact interactions + Coulomb
- typical lattice parameters

$$\Lambda = rac{\pi}{a} \simeq 300 \, {
m MeV} \, [{
m UV} \, {
m cutoff}]$$



• strong suppression of sign oscillations due to approximate Wigner SU(4) symmetry

J. W. Chen, D. Lee and T. Schäfer, Phys. Rev. Lett. 93 (2004) 242302, T. Lähde et al., arXiv:1502.06787

• hybrid Monte Carlo & transfer matrix (similar to LQCD)

### **CONFIGURATIONS**







 $\Rightarrow$  all *possible* configurations are sampled  $\Rightarrow$  *clustering* emerges *naturally* 

### **COMPUTATIONAL EQUIPMENT**



# **RESULTS from LATTICE NUCLEAR EFT**



• Structure of the Hoyle state PRL 109 (2012)





• Spectrum of <sup>16</sup>O

PRL 112 (2014)



#### • Going up the $\alpha$ -chain



• Rot. symmetry breaking PRD 90 (2014)



 $\wedge$ 

 $\triangleleft$ 

<

 $\nabla$ 

– Ulf-G. Meißner, Chiral Nuclear Dynamics – SFB 634 Concl. Conf., June 2015 • O

### **SYMMETRY-SIGN EXTRAPOLATION METHOD**

Epelbaum, Krebs, Lähde, Lee, Luu, UGM, Rupak, arXiv:1502.06787

 so far: nuclei with N = Z, and A = 4 × int as these have the least sign problem due to the approximate SU(4) symmetry

$$\langle {
m sign} 
angle = \langle \exp(i heta) 
angle = rac{{
m det}M(t_o,t_i,\ldots)}{\left|{
m det}M(t_o,t_i,\ldots)
ight|}$$

 $M(t_o, t_i, \ldots)$  is the transition matrix



Borasoy et al. (2007)

• Symmetry-sign extrapolation (SSE) method: control the sign oscillations

$$H_{d_h} = d_h \cdot H_{ ext{phys}} + (1 - d_h) \cdot H_{ ext{SU}(4)}$$

 $H_{{
m SU}(4)} = rac{1}{2} C_{{
m SU}(4)} \, (N^{\dagger} N)^2$ 

 $\hookrightarrow$  family of solutions for different SU(4) couplings  $C_{{
m SU}(4)}$ that converge on the physical value for  $d_h=1$ 

– Ulf-G. Meißner, Chiral Nuclear Dynamics – SFB 634 Concl. Conf., June 2015  $\cdot$  O  $\triangleleft$  C  $\wedge$   $\nabla$  > D  $\circ$ 

### **RESULTS** for <sup>12</sup>C

### • generate a few more MC data at large $N_t$ using SSE



- promising results  $\rightarrow$  no more exponential deterioration of the MC data
- results w/ small uncertainties for  $d_h \geq 0.8$

– Ulf-G. Meißner, Chiral Nuclear Dynamics – SFB 634 Concl. Conf., June 2015 · O < < /  $\bigtriangledown$  >  $\triangleright$  •

### <u>RESULTS for A = 6</u>

• Simulations for <sup>6</sup>He and <sup>6</sup>Be



 $\Rightarrow$  methods works for nuclei with A 
eq Z

 $\Rightarrow$  neutron-rich nuclei can now be systematically explored (larger volumes)

– Ulf-G. Meißner, Chiral Nuclear Dynamics – SFB 634 Concl. Conf., June 2015 · O < < / abla > b

### <u>AB INITIO CALCULATION of $\alpha$ - $\alpha$ SCATTERING</u>

- use lattice MC to construct an ab-initio cluster (adiabatic) Hamiltonian
- Use adiabatic Hamiltonian to compute scattering/reaction amplitudes Elhatisari et al. 2015



#### • D-wave equally well described

### **SUMMARY & OUTLOOK**

• Chiral nuclear EFT: best approach to nuclear forces and few-body systems

- $\rightarrow$  new, solid method to estimate the theoretical uncertainties
- $\rightarrow$  high-precision NN potential to fifth order available
- $\rightarrow$  pinning down the 3NFs under way
- Nuclear lattice simulations as a new quantum many-body approach
  - ightarrow clustering emerges naturally, lpha-cluster nuclei
  - $\rightarrow$  symmetry-sign extrapolation method allows to go to the drip lines
  - $\rightarrow$  holy grail of nuclear astrophysics ( $\alpha$ +<sup>12</sup>C  $\rightarrow$  <sup>16</sup>O+ $\gamma$ ) in reach

23