RUB

Partial wave analysis of NN scattering data in chiral EFT

Patrick Reinert Ruhr-Universität Bochum

9th International Workshop on Chiral Dynamics September 17-21, 2018, Durham

The story so far...

Recently N⁴LO semi-local momentum space regularized (SMS) potential [Eur. Phys. J. A54 (2018) 5, 86]

- New local regulator for long-range interaction
- Employs πN LECs from recent Roy-Steiner eq. analysis [Hoferichter et al. '15]
- NN contact LECs fitted to 2013 Granada database of NN scattering data

See talk by Evgeny Epelbaum

Introduction additional leading F-wave contact interactions (N⁴LO⁺) allowed precise description of data (χ^2 /datum ~ 1)

Inclusion of isospin breaking effects limited to Pion-Mass splitting in OPE and charge-dependent short-range interactions in ${}^1\!S_0$

Framework and precision allow to study full inclusion of IB effects

CIB interactions

Parameter-free for nuclear forces:

- $\delta M_{\pi} = M_{\pi^{\pm}} M_{\pi^{0}}$
- Use physical pion masses: $M_{\pi^\pm}=139.57$ MeV, $M_{\pi^0}=134.98\,{
 m MeV}$

CSB interactions

- Use physical nucleon mass shift $\delta m_N = -1.2933$ MeV where strong and e.m. mass shift contributions can be added together
- If not, use strong mass shift $\delta m_N^{\rm str.} = -2.05$ MeV determined via Cottingham sum rule [Gasser, Leutwyler '82] See talk by Andre Walker-Loud

— Have to determine:

- $2d_{17} d_{18} 2d_{19}$ (contributes to CSB OPE and subleading CSB TPE)
- CSB contacts entering S- & P-Waves

Fitting of contacts & charge-dependent OPE

General OPE without Isospin limit:

 $V_{1\pi}(pp) = f_p^2 V(M_{\pi^0})$ $V_{1\pi}(np) = -f_0^2 V(M_{\pi^0}) + (-1)^{t+1} 2f_c^2 V(M_{\pi^{\pm}})$ $V_{1\pi}(nn) = f_n^2 V(M_{\pi^0})$

With
$$V(M_i) = -\frac{4\pi}{M_{\pi^{\pm}}^2} \frac{\vec{\sigma}_1 \cdot \vec{q} \cdot \vec{\sigma}_2 \cdot \vec{q}}{\vec{q}^2 + M_i^2}$$
, $f_0^2 = f_p f_n$

- Fit 24 + 6 IB contact LECs + f_p , f_n , f_c = 33 parameters
- Combined fit of np- and pp- scattering data from self-consistent 2013 Granada database [Perez et al '13]
- Additional input: B_d=2.224575(9) MeV and b_{nn}=-3.7405(9) fm
- Increase energy range of data to $E_{lab} = 0 280 \text{ MeV}$

Charge-dependence of OPE coupling

neutron-proton scattering data $0-100$ 1.077 1.058 (+0.002) $0-200$ 1.070 1.055 (+0.002) $0-300$ 1.061 1.053 (+0.001)proton-proton scattering data $0-100$ 0.862 0.864 $0-200$ 0.954 0.951 $0-300$ 0.989 0.986	$\overline{E_{\text{lab}}}$ bin	$SMS N^4LO^+$	$SMS N^4LO^+ a$	dd. IB	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	neutron-	proton scattering	g data		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-100	1.077	1.058	(+0.002)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 - 200	1.070	1.055	(+0.002)	
proton-proton scattering data $0-100$ 0.862 0.864 $0-200$ 0.954 0.951 $0-300$ 0.989 0.986 (1)	0-300	1.061	1.053	(+0.001)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	proton-p	oroton scattering	data		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-100	0.862	0.864		
0-300 0.989 0.986 (1	0-200	0.954	0.951		
	0–300	0.989	0.986		$(\Lambda$

- Overall small improvement
- Largest effects for np data at low energies

 $(\Lambda = 450 \text{ MeV})$

	Nijmegen '93	Granada '17	N^4LO^+	
			$\Lambda = 450~{\rm MeV}$	$\Lambda = 500~{\rm MeV}$
$\overline{\overline{f_p^2}}$		0.0761(4)	0.0769(4)	0.0761(4)
f_{0}^{2}	0.075	0.0790(9)	0.0778(9)	0.0771(8)
f_c^2		0.0772(5)	0.0765(4)	0.0756(4)
		χ²/datum:	1.016	1.022

np-pp phaseshift difference contrib. (preliminary)

np-pp phaseshift difference (lower partial waves)

preliminary

np-pp phaseshift difference (higher partial waves)

preliminary

Isospin-breaking nn interaction (preliminary)

Pinning down (short-range) CSB effects is difficult due to our poor knowledge of the nn-interaction

Only used ${}^{1}S_{0}$ scattering length a_{nn} = -18.90 fm up to now (fix \tilde{C}_{1S0}^{nn})

What about IB C_i 's?

Large contributions from IB contact interactions in P-Waves:

Problem: How much of it is CIB / CSB ?

3N bound state energies (A=450 MeV, based on 2NF only):

³He: -7.368 MeV

³H:

-8.130 MeV (IB $C_i\ 's$ full CSB)

-8.090 MeV (IB C_i 's full CIB)

40 keV variation in binding energy difference

nn-pp phaseshift difference (preliminary)

Extension of SMS potential with complete treatment of isospin breaking effects

Small changes/improvements in np force & corresponding 2N observables at low energies

Results for charge dependence of OPE coupling constant are consistent with zero, but no definite statement yet

Lack of data to determine short-range IB details of nn force

Database

Use self-consistent 2013 Granada database [Phys. Rev. C 88.064002]

- Includes scattering data from 50ies up to 2013
- uses "3σ-criterion" to reject non-normaldistributed data
- rejection rate 0-300 MeV: np: 31%, pp: 11%

Comparison between theory and experiment via standard χ^2 approach:

$$\chi_j^2 = \sum_{i=1}^{n_j} \left(\frac{O_i^{exp} - ZO_i^{theo}}{\delta O_i} \right)^2 + \left(\frac{Z - 1}{\delta_{sys}} \right)^2$$

• Z (inverse relative norm) is chosen to minimze χ^2_{j}

