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High-precision nuclear forces from chiral EFT: 
Where do we stand?

Introduction

PWA of NN data in chiral EFT

Beyond NN: challenges and open problems



 From QCD to nuclei

QCD

effective chiral Lagrangian 

nuclear forces and currents

nuclear structure and dynamics

symmetries (especially the chiral symmetry);
lost of information (LECs)

integrate out                          (but retain               ):
Chiral Perturbation Theory

ab initio many-body methods:
lattice, FY, NCSM,…
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 From chiral Lagrangians to nuclei

Step 1: Derive nuclear forces and currents in ChPT [Method of UT, S-matrix matching, TOPT]. 
                  Nontrivial: ensure renormalizability of the nuclear potentials… 

Step 2: Introduce a cutoff Λ which in a nonrelativistic approach must be kept finite, Λ ~ Λb  
              [Lepage ’97; EE, Meißner ’06; EE, Gegelia ’09]. Nontrivial: symmetries…

Step 3: PWA of NN scattering data to fix bare LECs Ci(Λ) (i.e. implicit renormalization)

Step 4: Compute observables using ab initio methods [FY, Lattice, NCSM, GFMC, CC, IMSRG, …] 
             (talks by Maria Piarulli, Saori Pastore) and perform error analysis

Renormalization, power counting and all that

For a general discussion see materials of the KITP Program Frontiers in Nuclear Physics 
(2016): http://online.kitp.ucsb.edu/online/nuclear16/

EE, Gegelia, Meißner, NPB 925 (2017) 161: identified renormalization conditions yielding a consis-
tent expansion for systems close to the unitary limit with NDA scaling of LECs (W. counting). 
No contradiction with the KSW/RG-based counting (different renormalization conditions).

A renormalizable formulation based on the Lorenz-invariant Leff is available (requires 
contributions beyond VLO to be treated perturbatively)  EE, Gegelia PLB 716 (2012) 338.



 Chiral expansion of the nuclear forces [W-counting]

— Consistent vector, axial, pseudoscalar currents at N3LO (2-loop/1-loop/tree for 1N/2N/3N) talk by H. Krebs

— A similar program is being pursued in chiral EFT with explicit Δ(1232) Kaiser et al.; Krebs, Gasparyan, EE, Meißner
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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(preliminary)

parameter-free



 Determination of πN LECs
Matching ChPT to πN Roy-Steiner equations

πN scattering, 
physical region

χ expansion of the πN amplitude expected to 
converge best within the Mandelstam triangle

Hoferichter, Ruiz de Elvira, Kubis, Meißner, PRL 115 (2015) 092301

Closer to the kinematics relevant for nuclear 
forces…

NN potential

Subthreshold coefficients (from RS analysis) 
provide a natural matching point to ChPT

subthreshold 
expansion
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Relevant LECs (in GeV-n) extracted from πN scattering 

Energy bin LO NLO N2LO N3LO N4LO N4LO+

neutron-proton data

0 � 100 MeV 130.11 3.79 1.46 1.08 1.08 1.08

0 � 200 MeV 104.71 19.88 3.21 1.14 1.09 1.10

0 � 300 MeV 111.24 52.03 8.78 1.51 1.15 1.13

proton-proton data

0 � 100 MeV 2046.58 33.68 6.67 0.86 0.84 0.84

0 � 200 MeV 1649.58 115.60 81.11 1.95 (1.08) 0.97

0 � 300 MeV 1301.41 104.38 84.24 2.73 (1.28) 1.18

c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 � d̄15 ē14 ē17

[Q4]HB,NN, GW PWA �1.13 3.69 �5.51 3.71 5.57 �5.35 0.02 �10.26 1.75 �0.58

[Q4]HB,NN, KH PWA �0.75 3.49 �4.77 3.34 6.21 �6.83 0.78 �12.02 1.52 �0.37

[Q4]HB,NN, Roy-Steiner �1.10 3.57 �5.54 4.17 6.18 �8.91 0.86 �12.18 1.18 �0.18

[Q4]covariant, data �0.82 3.56 �4.59 3.44 5.43 �4.58 �0.40 �9.94 �0.63 �0.90
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Krebs, Gasparyan, EE,
PRC85 (12) 054006

Siemens et al.,
PRC94 (16) 014620

Hoferichter et al.,
PRL 115 (15) 092301

— Some LECs show sizable correlations (especially c1 and c3)…

With the LECs taken from πN, the long-range NN force is fixed in a parameter-free way

— EKM N4LO [EE, Krebs, Meißner, PRL 115 (2015) 122301]: Q4 fit to KH PWA
— RKE N4LO [Reinert, Krebs, EE, EPJA 54 (2018) 88]: Q4 fit to RS and Q4 fit to KH PWA

[talks by Jacobo Ruiz de Elvira,
                Martin Hoferichter]



 Regularization
The cutoff Λ has to be kept finite, Λ ~ Λb. In practice, even low values of Λ are preferred:

— many-body methods require soft interactions,
— spurious deeply-bound states for Λ > Λcrit make calculations for A > 3 unfeasible…

it is crucial to employ a regulator that minimizes finite-Λ artifacts!
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EE, Glöckle, Meißner ’04;
Entem, Machleidt ’03; 
Entem, Machleidt, Nosyk ’17; …

Nonlocal:

affect long-range interactions…

Local (implemented in coordinate space)
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used in EE, Krebs, Meißner (EKM) ’15

— still an ad hoc procedure
— (technically) difficult to apply to 3NF and exchange currents

/ g
6

A

V
reg

1⇡
/

e
� ~q 2+M2

⇡
⇤2

~q 2 + M2

⇡

�!
1

~q 2 + M2

⇡

⇣
1 + short-range terms

⌘

vµ = v
(s)

µ
+

1

2
⌧ · v, aµ =

1

2
⌧ · a, s = s0 + ⌧ · s, p = p0 + ⌧ · p

vµ ! v
0
µ
= vµ + vµ ⇥ ✏V + aµ ⇥ ✏A + @µ✏V ,

aµ ! a
0
µ
= aµ + aµ ⇥ ✏V + vµ ⇥ ✏A + @µ✏A,

s0 ! s
0
0
= s0 � p · ✏A,

s ! s
0 = s + s ⇥ ✏V � p0✏A,

i p0 ! i p
0
0
= i(p0 + s · ✏A),

i p ! i p
0 = i(p + p ⇥ ✏V + s0 ✏A)

✏V =
1

2
(✏R + ✏L) and ✏A =

1

2
(✏R � ✏L) .

i
@

@t
 = He↵ [a, ȧ, v, v̇, s, ṡ, p, ṗ] 

i
@

@t
 0 = He↵ [a

0
, ȧ

0
, v

0
, v̇

0
, s

0
, ṡ

0
, p

0
, ṗ

0] 0

U = exp

✓
i

Z
d
3
x[Rv

0
(~x) · ✏V (~x, t) + R

v

1
(~x) · ✏̇V (~x, t) + R

a

0
(~x) · ✏A(~x, t) + R

a

1
(~x) · ✏̇A(~x, t)]

◆
,

He↵ [a
0
, ȧ

0
, v

0
, v̇

0
, s

0
, ṡ

0
, p

0
, ṗ

0 ]|v=v̇=a=ȧ=p=ṗ=ṡ=0,s=mq =

W +

Z
d
3
x

⇣
i[W,R

v

0
(~x)] · ✏V (~x, t) + i[W,R

v

1
(~x)] · ✏̇V (~x, t) + i[W,R

a

0
(~x)] · ✏A(~x, t)

+i[W,R
a

1
(~x)] · ✏̇A(~x, t) + R

v

0
(~x) · ✏̇V (~x, t) + R

v

1
(~x) · ✏̈V (~x, t) + R

a

0
(~x) · ✏̇A(~x, t) + R

a

1
(~x) · ✏̈A(~x, t)

⌘
,

1

Reinert, Krebs, EE ’18;Local:

— Application to 2π exchange does not require re-calculating the corresponding diagrams:

reg.

polynomial 
in q2, Mπ

~k ' 0

V (Q2)
2⇡ (~q ) =

g2
A

(2F⇡)4
~⌧1 · ~⌧2

Z d3l

(2⇡)3
l2 � q2

!+!�(!+ + !�)

V (Q2)
2⇡ (~q ) =

g2
A

(2F⇡)4
~⌧1 · ~⌧2

Z d3l1

(2⇡)3
d3l2

(2⇡)3
(2⇡)3�(~q �~l1 �~l2)

4~l1 ·~l2

!1!2(!1 + !2)

V (Q2)
2⇡ (~q ) /

Z d3l1d3l2

(2⇡)3
�(~q �~l1 �~l2)

4~l1 ·~l2

!1!2(!1 + !2)

=
Z d3l1d3l2

(2⇡)3
�(~q �~l1 �~l2)

2

⇡

Z 1

0
d�

4~l1 ·~l2

[!2
1 + �2][!2

2 + �2]

�!

Z
dµ2

1dµ
2
2

Z d3l1d3l2

(2⇡)3
�(~q �~l1 �~l2)

2

⇡

Z 1

0
d�

4~l1 ·~l2 ⇢(µ1) ⇢(µ2)

[(~l21 + �2) + µ2
1][(

~l22 + �2) + µ2
2]

Z
d�

d3l1d3l2

(2⇡)3
�(~q �~l1 �~l2)

h
@M⇡

i 1
h
(~l21 + �2) + M2

⇡

i h
(~l22 + �2) + M2

⇡

i ⇥ . . .

�! 2e� ~q2

2⇤2

Z
d�

d3l

(2⇡)3

h
@M⇡

i e�
~l2+4�2+4M2

⇡
2⇤2

h
!2

+ + 4�2
i h
!2

� + 4�2
i ⇥ . . .

Z
d�

d3l1d3l2

(2⇡)3
�(~q �~l1 �~l2)

h
@M⇡

i 1
h
(~l21 + �2) + M2

⇡

i h
(~l22 + �2) + M2

⇡

i ⇥ . . .

�! 2e� ~q2

2⇤2

Z
d�

d3l

(2⇡)3

h
@M⇡

i e�
~l2+4�2+4M2

⇡
2⇤2

h
(~q +~l)2 + 4M2

⇡
+ 4�2

i h
(~q �~l)2 + 4M2

⇡
+ 4�2

i ⇥ . . .

V (q) =
2

⇡

Z 1

2M⇡

µdµ
⇢(µ)

q2 + µ2
+ . . . �! V⇤(q) = e� q2

2⇤2
2

⇡

Z 1

2M⇡

µdµ
⇢(µ)

q2 + µ2
e� µ2

2⇤2 + . . . .

V (Q2)
2⇡ / g2

A

1

— Convention: choose polynomial terms such that                                  

— EM N
3
LO — — EMN N

4
LO

+
— — SMS N

4
LO

+
—

Elab bin ⇤ = 500 ⇤ = 600 ⇤ = 450 ⇤ = 500 ⇤ = 550 ⇤ = 450

neutron-proton scattering data

0 � 100 1.18 1.36 1.29 1.12 1.12 1.07
0 � 200 1.17 1.33 1.33 1.18 1.23 1.06
0 � 300 1.23 1.37 2.48 1.26 1.35 1.10

proton-proton scattering data

0 � 100 1.02 1.35 0.90 1.00 1.17 0.86
0 � 200 1.32 1.60 1.05 1.15 1.43 0.95
0 � 300 1.39 2.07 1.46 1.20 1.40 0.99

Energy bin N3LO Idaho 500/600 N4LO/N4LO+ CD Bonn 2000 Nijm II

neutron-proton data

0 � 100 MeV 1.17/1.35 1.08/1.08 1.08 1.08

0 � 200 MeV 1.17/1.33 1.09/1.10 1.07 1.07

0 � 300 MeV 1.24/1.38 1.15/1.13 1.09 1.11

proton-proton data

0 � 100 MeV 0.96/1.28 0.84/0.84 0.84 0.83

0 � 200 MeV 1.28/1.55 1.34/0.97 0.95 0.96

0 � 300 MeV 1.37/2.04 1.46/1.18 0.99 1.03

Z 1

0
dµ2 ⇢(µ2

)

~l 2 + µ2
�!

1

~l 2 + M2
⇡

e�
~l2+M2

⇡
⇤2

V (q) =
2

⇡

Z 1

2M2
⇡

µdµ
⇢(µ)

q2 + µ2
�! V⇤(q) = e� q2

2⇤2
2

⇡

Z 1

2M2
⇡

µdµ
⇢(µ)

q2 + µ2
e� µ2

2⇤2 .

�
nV⇤, long(~r )

���
r=0

= 0

”�2/datum” (np, 0-200 MeV) = 1.8
R=1.2 fm ! 0.8

R=1.1 fm ! 0.6
R=1.0 fm ! 0.7

R=0.9 fm ! 0.8
R=0.8 fm ,

while the results for pp channels are:

”�2/datum” (pp, 0-200 MeV) = 8.2
R=1.2 fm ! 2.2

R=1.1 fm ! 0.6
R=1.0 fm ! 0.7

R=0.9 fm ! 2.1
R=0.8 fm .

5

does not affect long-range physics at any order in 1/Λ2-expansion 

[inspired by 
Thomas Rijken]
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FIG. 2: (Color online) Ratios W (2)
C,⇤, i(r)/W

(2)
C,1(r) for for di↵erent implementations of the regularization i = 1, . . . , 4 defined in

the text as a function of the relative distance between the nucleons. Dashed-double-dotted light-brown, dashed blue, dashed-
dotted green and solid red lines refer to i = 1, 2, 3 and 4, respectively. The cuto↵ ⇤ is set to be ⇤ = 450 MeV. The dotted
horizontal line corresponds to the unregularized potential, i.e., the ratio is equal to 1, and is drawn to guide the eyes.

2. Next, we follow the opposite approach and retain only the momentum-dependent part of the regulator with-
out introducing spectral-function regularization. The regularized potential is defined by means of the twice
subtracted spectral integral

W (2)

C,⇤, 2
(q) = e�

q2

2⇤2
2

⇡

Z 1

2M⇡

dµ

µ3
⌘(2)
C

(µ)
q4

µ2 + q2
, W (2)

C,⇤, 2
(r) =

1

2⇡2

Z
q2dq j0(qr)W

(2)

C,⇤, 2
(q) . (2.36)

Alternatively, one can just multiply W (2)

C,1(q) by the regulator e�
q2

2⇤2 , which leads to a di↵erent admixture of
the contact terms. We found, however, that this definition leads to larger distortions at short distances as the
one in Eq. (2.36).

3. In the third approach, the regularized potential is defined according to Eq. (2.23) but without explicitly sub-
tracting the short-range terms, i.e.:

W (2)

C,⇤, 3
(q) = e�

q2

2⇤2
2

⇡

Z 1

2M⇡

dµ

µ3
⌘(2)
C

(µ)
q4

µ2 + q2
e�

µ2

2⇤2 , (2.37)

and the Fourier transform to coordinate space can be performed using the second relation in Eq. (2.36).

4. Finally, the approach to define the regularized potential W (2)

C,⇤
(q) adopted in the present analysis is

W (2)

C,⇤, 4
(q) = e�

q2

2⇤2
2

⇡

Z 1

2M⇡

dµ

µ3
⌘(2)
C

(µ)

✓
q4

µ2 + q2
+ C2

C,1
(µ) + C2

C,2
(µ) q2

◆
e�

µ2

2⇤2 , (2.38)

where the functions C2

C,i
(µ) are determined as described above and given in appendix A.

In Fig. 2, we show the ratios of the potentials W (2)

C,⇤, i
(r), with r = 1, . . . , 4, to the unregularized expression W (2)

C,1(r)
As before, we use the intermediate value of the cuto↵ of ⇤ = 450 MeV. Retaining only the momentum-transfer-

Regularized 2π-exchange potential:

Various regularization approaches

only in q

only in μ

in q, μ

in q, μ 
+ subtractions

— EM N
3
LO — — EMN N

4
LO

+
— — SMS N

4
LO

+
—

Elab bin ⇤ = 500 ⇤ = 600 ⇤ = 450 ⇤ = 500 ⇤ = 550 ⇤ = 450

neutron-proton scattering data

0 � 100 1.18 1.36 1.29 1.12 1.12 1.07
0 � 200 1.17 1.33 1.33 1.18 1.23 1.06
0 � 300 1.23 1.37 2.48 1.26 1.35 1.10

proton-proton scattering data

0 � 100 1.02 1.35 0.90 1.00 1.17 0.86
0 � 200 1.32 1.60 1.05 1.15 1.43 0.95
0 � 300 1.39 2.07 1.46 1.20 1.40 0.99

Z 1

0
dµ2 ⇢(µ2

)

~l 2 + µ2
�!

1

~l 2 + M2
⇡

e�
~l2+M2

⇡
⇤2

V (q) =
2

⇡

Z 1

2M2
⇡

µdµ
⇢(µ)

q2 + µ2
�! V⇤(q) = e� q2

2⇤2
2

⇡

Z 1

2M2
⇡

µdµ
⇢(µ)

q2 + µ2
e� µ2

2⇤2 .

V (q) =
2

⇡

Z 1

2M2
⇡

µdµ
⇢(µ)

q2 + µ2
�! WC,⇤(q) = e� q2

2⇤2
2

⇡

Z 1

2M2
⇡

µdµ
⇢(µ)

q2 + µ2
e� µ2

2⇤2 .

�
nV⇤, long(~r )

���
r=0

= 0

W (2)
C,1(r) =

M⇡

128⇡3F 4
⇡
r4

⇣
1+2g2

A
(5+2x2

)�g4
A
(23+12x2

)

⌘
K1(2x)+x

⇣
1+10g2

A
�g4

A
(23+4x2

)

⌘
K0(2x)

#

W (2)
C,1(q) = �

1

384⇡2F 4
⇡

L(q)

"

4M2
⇡
(5g4

A
� 4g2

A
� 1) + q2

(23g4
A
� 10g2

A
� 1) +

48g4
A
M4

⇡

4M2
⇡
+ q2

#

�
3g4

A

64⇡2F 4
⇡

L(q)
h
(~�1 · ~q ) (~�2 · ~q ) � (~�1 · ~�2) q

2
i
,

”�2/datum” (np, 0-200 MeV) = 1.8
R=1.2 fm ! 0.8

R=1.1 fm ! 0.6
R=1.0 fm ! 0.7

R=0.9 fm ! 0.8
R=0.8 fm ,

5

Λ = 500 MeV

Does it matter in practice?

 Regularization



LO [Q0]:
NLO [Q2]:

N3LO [Q4]:

2 operators (S-waves)
+ 7 operators (S-, P-waves and ε1)

+ 15 operators (S-, P-, D-waves, ε1,2) 
N4LO [Q5]: no new isospin-conserving operators

N2LO [Q3]: no new isospin-conserving operatorsWeinberg’s counting:

Use a simple nonlocal Gaussian regulator for contacts with Λ = 350…500 MeV

N4LO+ [Q6]: + 4 F-wave operators

 Contact interactions

+ 15 12 operators (S-, P-, D-waves, ε1,2) 

Fits @N3LO & beyond indicate some redundancy [Hammer, Furnstahl; Beane, Savage, Wesolowski et al.]
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1 + short-range terms

⌘

h
1
S0, p

0
|Vcont|
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S0, pi = C̃1S0 + C1S0(p
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� p
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02) + D3S1 p
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3S1
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� p
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� p
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|Vcont|

3
D1, pi = C✏1p

2 + D
1
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p
2
p
02 + D

2

✏1
p
4

vµ = v
(s)

µ
+

1

2
⌧ · v, aµ =

1

2
⌧ · a, s = s0 + ⌧ · s, p = p0 + ⌧ · p

vµ ! v
0
µ
= vµ + vµ ⇥ ✏V + aµ ⇥ ✏A + @µ✏V ,

aµ ! a
0
µ
= aµ + aµ ⇥ ✏V + vµ ⇥ ✏A + @µ✏A,

s0 ! s
0
0
= s0 � p · ✏A,

s ! s
0 = s + s ⇥ ✏V � p0✏A,

i p0 ! i p
0
0
= i(p0 + s · ✏A),

i p ! i p
0 = i(p + p ⇥ ✏V + s0 ✏A)

✏V =
1

2
(✏R + ✏L) and ✏A =

1

2
(✏R � ✏L) .

i
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0
, p

0
, ṗ
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(Short-range) UTs                                   with

Si(k) :=
@He↵

@si(k)

�����
v=a=p=0, s=mq

V⇡(~r ) �! V⇡(~r )
h
1 � exp(�r2/R2)

i
n

,

S(0) =
@He↵

@mq

+ O(Q)

V (Q2)
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2q4

⇡
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q2 + µ2
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,

3

Induced terms in the Hamiltonian: 

have the form of                      3 terms can be eliminated (modulo higher-order terms…)
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 Partial wave analysis of NN data

Since 1950-es, about 3000 proton-proton + 5000 neutron-proton scattering data below 
350 MeV have been collected.

However, certain data are mutually incompatible within errors and have to be rejected. 
2013 Granada database [Navarro-Perez et al., PRC 88 (2013) 064002], rejection rate: 31% np, 11% pp:
            2158 proton-proton + 2697 neutron-proton data below Elab = 300 MeV

7

Database

● Includes scattering data from 50ies up to 
2013

● uses ”3σ-criterion” to reject non-normal-
distributed data

● rejection rate 0-300 MeV: np: 31%, pp: 11%
np

pp

Use self-consistent 2013 Granada database 
[Phys. Rev. C 88.064002]

Comparison between theory and 
experiment via standard χ2 approach:

● Z (inverse relative norm) is chosen to 
minimze χ2

j
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distributed data
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pp

Use self-consistent 2013 Granada database 
[Phys. Rev. C 88.064002]

Comparison between theory and 
experiment via standard χ2 approach:

● Z (inverse relative norm) is chosen to 
minimze χ2

j

7

Database

● Includes scattering data from 50ies up to 
2013

● uses ”3σ-criterion” to reject non-normal-
distributed data

● rejection rate 0-300 MeV: np: 31%, pp: 11%
np

pp

Use self-consistent 2013 Granada database 
[Phys. Rev. C 88.064002]

Comparison between theory and 
experiment via standard χ2 approach:

● Z (inverse relative norm) is chosen to 
minimze χ2

j

To fix NN contact interactions, use scattering data together with Bd = 2.224575(9) MeV 
and bnp = 3.7405(9) fm. 

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

Incomplete treatment of IB effects: Vγ + V1π + Vcont (1S0)
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FIG. 16: (Color online) Neutron-proton S-, P-, D- and F-wave phase shifts and the mixing angles ✏1, ✏2 and ✏2 as obtained
at N4LO+ using the cuto↵ ⇤ = 450 MeV (red solid lines) in comparison with the Nijmegen [20] (solid dots) the Granada [92]
(blue open triangles) and Gross-Stadler [121] (green open squares) PWA. Light shaded bands show the estimated truncation
error as explained in appendix D. The shown uncertainties of the Nijmegen PWA correspond to systematic errors estimated
from the Nijm I, II and Reid93 potentials [110] as explained in Ref. [6].

and 0.15%, respectively.13 In both cases, the observed ⇤-dependence is smaller than the deviations from the very
precisely known experimental/empirical values listed in Table VIII. These deviations amount to ⇠ 0.015 fm2 and
⇠ 0.009 fm for Q and rd, respectively, and are comparable with the truncation errors for these quantities at N2LO,

namely �Q(3) = ±(0.005 . . . 0.011) fm2 (depending on the cuto↵) and �r(3)
d

= ±0.005 fm, which estimate the expected
size of N3LO contributions to these observables. This is fully in line with the fact that our calculations do not take
into account the relativistic corrections and contributions to the exchange charge operator at N3LO, see Ref. [33, 34]
for explicit expressions. Our results further indicate that starting from N3LO, the theoretical uncertainty for both
quantities is dominated by the one of the ⇡N LECs similarly to other low-energy observables considered in this and
previous sections. For both Q and rd, employing the ⇡N LECs from set 2 tends to increase the discrepancy with the
empirical numbers.

13
The smaller cuto↵ dependence of the deuteron radius reflects the long-range nature of this observable as opposed to that of Q.

— For the first time, chiral EFT potentials qualify for being regarded as PWA
— Clear evidence of the parameter-free chiral 2π exchange 
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Partial wave analysis of NN data



Energy bin LO NLO N2LO N3LO N4LO N4LO+

neutron-proton data

0 � 100 MeV 73 2.2 1.23 1.08 1.08 1.07

0 � 200 MeV 62 5.4 1.77 1.09 1.08 1.06

0 � 300 MeV 75 14 4.4 1.99 1.18 1.10

proton-proton data

0 � 100 MeV 2300 10 2.1 0.91 0.88 0.86

0 � 200 MeV 1780 90 37 2.00 1.42 0.95

0 � 300 MeV 1380 88 41 3.42 1.67 0.99

Elab bin CD Bonn(43) Nijm I(41) Nijm II(47) Reid93(50) N
4
LO

+
(27+1), this work

neutron-proton scattering data
0 � 100 1.08 1.06 1.07 1.08 1.07
0 � 200 1.08 1.07 1.07 1.09 1.07
0 � 300 1.09 1.09 1.10 1.11 1.06

proton-proton scattering data
0 � 100 0.88 0.87 0.87 0.85 0.86
0 � 200 0.98 0.99 1.00 0.99 0.95
0 � 300 1.01 1.05 1.06 1.04 1.00
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χ2/datum for the description of the Granada-2013 database: χEFT vs. phenomenology
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2. Statistical uncertainties

3. Uncertainties due to πN LECs c1,2,3,4 , d1,2,3,5,14,15  and e14,17

4. Choice of Emax in the fits

Estimated using 2 sets of πN LECs (Roy-Steiner equation analysis & KH PWA)

Uncertainty estimated at N4LO/N4LO+ by performing fits with Emax = 220…300 MeV

Estimated in the standard way using the covariance matrix (quadratic approximation)

Error analysis
1. Truncation error
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Figure 8: Predictions for the np differential cross section dσ/dΩ, the analyzing power Ay, the
rotation parameter R, the polarization-transfer parameters Dt , Rt and At and the spin-correlation
parameters Cnn, Ckp, Cpp, Ckk, Azx and Azz at Elab = 143MeV calculated up to N4LO based on the
cutoff of R = 0.9fm. Data for the cross section are at Elab = 142.8MeV and taken from [92] and
for the analyzing power from [93]. For remaining notation see Fig. 6.

Using Eqs. (3.3) and (3.4) and adopting Q = Mπ/Λb, our predictions for AS at N4LO is AS =
0.8844± 0.0002 fm−1/2 while the accuracy for η is beyond the quoted figures. For the rd and Q,
our results are incomplete as we do not include relativistic corrections and meson-exchange current
contributions. The estimated size of these corrections is consistent with the deviation between our
values and the empirical numbers, see [18] for an extended discussion.

4. Beyond the two-nucleon system

Having developed the new generation of NN potentials up to N4LO and the novel approach
to uncertainty quantification, which has been validated in the NN system, we are well prepared to
test nuclear chiral EFT in heavier systems and to systematically analyze the role of the 3NF, which
has been the subject of intense experimental research at FZ Jülich, GANIL, KVI, RIKEN, TUNL
and other laboratories. This is the main goal of the recently formed Low Energy Nuclear Physics
International Collaboration (LENPIC). The numerical implementation of the 3NF regularized in
the same way as the NN potentials of Refs. [18, 19] is currently in progress so that no results
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Figure 8: Predictions for the np differential cross section dσ/dΩ, the analyzing power Ay, the
rotation parameter R, the polarization-transfer parameters Dt , Rt and At and the spin-correlation
parameters Cnn, Ckp, Cpp, Ckk, Azx and Azz at Elab = 143MeV calculated up to N4LO based on the
cutoff of R = 0.9fm. Data for the cross section are at Elab = 142.8MeV and taken from [92] and
for the analyzing power from [93]. For remaining notation see Fig. 6.

Using Eqs. (3.3) and (3.4) and adopting Q = Mπ/Λb, our predictions for AS at N4LO is AS =
0.8844± 0.0002 fm−1/2 while the accuracy for η is beyond the quoted figures. For the rd and Q,
our results are incomplete as we do not include relativistic corrections and meson-exchange current
contributions. The estimated size of these corrections is consistent with the deviation between our
values and the empirical numbers, see [18] for an extended discussion.

4. Beyond the two-nucleon system

Having developed the new generation of NN potentials up to N4LO and the novel approach
to uncertainty quantification, which has been validated in the NN system, we are well prepared to
test nuclear chiral EFT in heavier systems and to systematically analyze the role of the 3NF, which
has been the subject of intense experimental research at FZ Jülich, GANIL, KVI, RIKEN, TUNL
and other laboratories. This is the main goal of the recently formed Low Energy Nuclear Physics
International Collaboration (LENPIC). The numerical implementation of the 3NF regularized in
the same way as the NN potentials of Refs. [18, 19] is currently in progress so that no results
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FIG. 8. (color online) Cross sections at 50MeV and 96MeV for all orders from EKM, with DOB intervals at each order using
a wide variety of prior sets. Note the change in scale at each order. The thick error bars indicate 68% DOB intervals while
the thin error bars indicate 95% DOB intervals. In each panel the dashed line is the result of the next-order calculation (NLO
at LO, N2LO at NLO, etc.), shown to facilitate an assessment of the statistical consistency of di↵erent prior choices. For each
prior choice, the intervals on the left are from keeping only the first omitted term while those on the right are including four
omitted terms. The shaded bands indicate the uncertainty from EKM.

that this results in the omission of the DOB interval for
N4LO at 50 MeV with Set A0.5�2 as c̄> is then less than
c̄(k), so the distribution is not defined in this case.

Overall, the prior sets A✏ and C✏ appear to be too con-
servative for predictions at LO; we know that A✏ and C✏

have incorporated less information than the alternatives
so it is no surprise that their posteriors are more widely
distributed. Importantly, we find that the posteriors for
�k for k � 2 are largely insensitive to the choice of prior,
even for the 95% DOB interval. As posteriors retain ar-
tifacts of the prior in inverse proportion to the strength
of the data, this similarity suggests that the data is su�-
ciently informative that any reasonable prior is properly
subservient and thus able to adapt to evidence of the real
world presented by the data.

IV. CHOICE OF EXPANSION PARAMETER

In the previous section, the scale ⇤b in the expansion
parameter was taken from Ref. [10], where it was ex-
tracted from error plots after the fit of the LECs. This
identification was certainly not rigorous in any statistical
sense. Therefore here we explore how ⇤b can be extracted
from the convergence pattern of the EFT for observables.

In the case of pQCD, Cacciari and Houdeau discussed
using an expansion parameter that is di↵erent from ↵s.
They introduced a scale factor �, so that the expansion
is in powers of ↵s/� [6]. This changes the expressions for
pr(�k|c0 . . . , ck) by a rescaling of the expansion param-
eter Q and a corresponding rescaling of the coe�cients
themselves. We can rewrite the series for an observable
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FIG. 10. (color online) Empirical determination of � by com-
paring results at di↵erent orders. The cross sections used are
the computations with the R = 0.9 fm regulator. Priors are
Set A(1)

✏ . For full explanation see text.

are fairly wide, but still the only curve which falls com-
pletely within the 68% interval is � = 1.3. The orig-
inal expansion parameter at � = 1 spends some time
above the 1� region, which may reflect that DOB inter-
vals resulting from this prior are too conservative; i.e.,
the actual success rate regularly exceeds the DOB that
has been assigned. This is consistent with our earlier ob-
servation that Set A✏ priors produce overly conservative
DOB intervals.
We also compute the intervals using Set C(1)

✏ , which ac-
counts for the e↵ects of each coe�cient and is less conser-
vative. The results are contained in Fig. 11. We see that
even for these assumptions, the � = 1 curve gets outside
the 1� band. The plot suggests � = 1.1 is a more con-
sistent choice (other values near � = 1.1 will, of course,
also be consistent). Because the DOB intervals computed

with Set C(1)

✏ priors are more informed by the available
coe�cients, this result may suggest a small increase in
the assigned breakdown scale is appropriate. However,
we note the small amount of data on EFT convergence
that is being used here; almost all rescalings considered
are consistent at the 2� level. Such determinations of ⇤b

from success rates can be sharpened by considering the
behavior of the EFT series for more observables.

B. Gaussian naturalness and the Forte method

in Ref. [45], Forte et al. suggest that, for QCD expan-
sions, the best � is the one that makes all the expansion
coe�cients closest to the same size, which they inter-
pret as a statement that the coe�cients should be nor-
mally distributed around a single number µ with variance
�
2 [45]. For a quantity for which the known information
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FIG. 11. (color online) Empirical determination of � by com-
paring results at di↵erent orders. The cross sections used are
the computations with the R = 0.9 fm regulator. Priors are
Set C(1)

✏ . For full explanation see text.

is a mean and standard deviation, in this case a particular
coe�cient cn, the method of maximum entropy results in
a distribution that is a gaussian [20, 22]:

pr(cn|�, µ,�) =
1

p
2⇡�

exp

✓
�
(|cn|�n

� µ)2

2�2

◆
. (41)

If we have several known coe�cients, all of which are
drawn from a distribution with the same mean and stan-
dard deviation, the joint pdf pr(c0, . . . , ck|�, µ,�) be-
comes the standard likelihood function. If � = c̄ and
µ = 0 such a distribution corresponds to the Set C prior
of Table I.
Forte et al. consider the probability distribution for

both µ and � given a set of {cn} [45]. This can be ob-
tained from (41) using Bayes’ theorem:

pr(�, µ|c0, . . . , ck,�) =
pr(c0, . . . , ck|�, µ,�) pr(�, µ|�)

pr(c0, . . . , ck|�)
.

(42)
Forte et al. assign no prior information to � and µ other
than that both are larger than zero, and neither quantity
depends on � a priori. They then take the prior and the
evidence in the denominator to be an overall normaliza-
tion factor that is independent of � and µ, and so do
not calculate them explicitly (cf. discussion of a scale-
invariant prior for � below). The pdf for � and µ can
then be written

pr(�, µ|c0, . . . , ck,�) / pr(c0, . . . , ck|�, µ,�) , (43)

meaning that maximizing the probability of � and µ is
equivalent to minimizing

�
2 =

NOX

i=1

kX

n=0

 
|c

(i)

n |�
n
� µ

�

!2

, (44)
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Figure 7: Chiral expansion of the np total cross section at different energies based on R = 0.9 fm
in comparison with experimental data of Ref. [90]. The horizontal band shows the result of the
NPWA.

Table 2: Deuteron binding energy Bd (in MeV), asymptotic S state normalization AS (in fm−1/2),
asymptotic D/S state ratio η , radius rd (in fm), quadrupole moment Q (in fm2) and the D-state
probability PD (in %) based on the cutoff R= 0.9 fm. Notice that rd and Q are calculated without
including exchange current contributions and relativistic corrections. References to experimental
data/empirical values can be found in Ref. [18].

LO NLO N2LO N3LO N4LO Empirical

Bd 2.0235 2.1987 2.2311 2.2246⋆ 2.2246⋆ 2.224575(9)
AS 0.8333 0.8772 0.8865 0.8845 0.8844 0.8846(9)
η 0.0212 0.0256 0.0256 0.0255 0.0255 0.0256(4)
rd 1.990 1.968 1.966 1.972 1.972 1.97535(85)
Q 0.230 0.273 0.270 0.271 0.271 0.2859(3)
PD 2.54 4.73 4.50 4.19 4.29
⋆The deuteron binding energy has been taken as input in the fit.

NPWA and confirm a good convergence of the chiral expansion. More results for NN observables
can be found in Refs. [18, 19].

As already advertised, the novel approach to uncertainty quantification is not restricted to a
particular choice of the regulator. Carrying out the error analysis for calculations based on different
choices of R thus provides a useful consistency check of the method. In Fig. 9, we show the results
for the total cross section at all orders starting from NLO and for all considered cutoff choices.
Within the quoted errors, the predictions based on different values of R agree with each other and
the NPWA for all orders in the chiral expansion. The accuracy of the predicted results for the cross
section shows the same dependence on the cutoff as the quality of the fits discussed in section 2.4.

In Table 2, we list our results for the deuteron properties. At the considered accuracy level,
the chiral expansion is nearly converged already at N3LO except for PD which is not an observable
quantity.8 The predicted values for AS and η are in excellent agreement with the empirical numbers.

8PD = 5%±1% has been used as an additional “data” point in the fits at N3LO and N4LO in order to stabilize the
results, see Ref. [18] for more detail.
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Our determination:

 Error analysis P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

In most cases, the uncertainty is dominated by truncation errors. At N4LO and at very low 
energies, other sources of errors become comparable (especially πN LECs…). 
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The only unknown LECs up to N4LO are 
charge-dependent πN coupling 
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Subleading contributions (Q5)
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(tensor + spin-spin) Class III

Results in EFT with explicit Δ DOF are also available (a new ingredient due to mass
splittings in the Δ quartett ): a much better convergence, net results similar… 
E.E., Krebs, Meißner ’07,’08
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talk by Patrick Reinert



 Charge dependence of the πN couplings

NN PWA by the Nijmegen Group 
[Klomp, Stoks, de Swart ’91]
  — np + pp data up to Elab = 350 MeV
  — Vγ + V1-boson + Vphen 

NN PWA by the Granada Group
[Navarro-Perez, Amaro, Ruiz Arriola ’17]
  — Granada-2013 np + pp database
  — Elab = 0…350 MeV
  — Vγ + V1π + δ-shells

[Rentmeester et al. ’99]
  — pp data, including 2π-exchange from χEFT

NN PWA by the Bochum Group (preliminary)
[talk by Patrick Reinert]
  — Granada-2013 np + pp database
  — Elab = 0…280 MeV
  — Vγ + VNN@N4LO+ + IB corrections
  — uncertainty analysis (beyond statistical errors)

0.073 0.074 0.075 0.076 0.077 0.078 0.079 0.08

Goldberger-Miyazawa-Oehme (GMO) sum rule 
[Ericson et al. ’02]

fixed-t dispersial relations [Arndt et al. ’06]

π—d scattering + GMO sum rule [Baru et al. ’11]

  — no evidence of charge dependence of f2
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 Beyond the two-nucleon system
N2LO: tree-level graphs, 2 new LECs  

N3LO: leading 1 loop, parameter-free  

N4LO: full 1 loop, almost completely worked out, several new LECs  

2

1/m

(a) (b) (c) (d) (e) (f) (g)

FIG. 1. (color online) Di↵erent topologies that contribute to the chiral 3NF up to N3LO (and N4LO). Nucleons and pions
are represented by solid and dashed lines, respectively. The shaded vertices denote the amplitudes of the corresponding
interaction. Specifically, the individual diagrams are: (a) 2⇡ exchange, (b) 1⇡-contact, (c) pure contact, (d) 2⇡-1⇡ exchange,
(e) ring contributions, (f) 2⇡-contact and (g) relativistic corrections. See main text for details.

form for few- and many-body frameworks represents a
highly nontrivial task [37–39]. Due to the huge amount
of computational resources needed for this decomposi-
tion, matrix elements have been so far available only in
a limited model space [16]. As a consequence, consistent
N3LO three-body scattering calculations were limited to
low energies and no studies of heavier nuclei were pos-
sible. In this paper we present a novel framework that
allows one to decompose 3N interactions in a plane-wave
partial wave basis in a computationally much more ef-
ficient way than the framework of Refs. [38, 39]. This
new method makes explicit use of the fact that all (un-
regularized) contributions to chiral 3NFs are either local,
i.e. they depend only on momentum transfers, or they
contain only polynomial non-local terms.

In Section II we derive the new framework for decom-
posing local 3NFs e�ciently in a momentum-space par-
tial wave basis. In Section III we apply the calculated
matrix elements of chiral 3NFs up to N3LO to nuclear
matter and 3H, discuss the partial wave convergence and
investigate the importance of the individual topologies at
di↵erent orders in the chiral expansion. In Section IV we
summarize and given an outlook of future applications.

II. PARTIAL WAVE DECOMPOSITION OF
LOCAL THREE-NUCLEON FORCES

A general translationally invariant 3NF can be ex-
pressed as a function of the Jacobi momenta p = k1�k2

2

and q = 2
3

⇥
k3 � 1

2 (k1 + k2)
⇤
, where ki denote the single

nucleon momenta (in the following equations we will first
suppress spin and isospin degrees of freedom):

V123 = V123(p,q,p
0
,q0). (1)

Here and in the following p and q (p0 and q0) denote
the Jacobi momenta of the initial (final) state. For local
interactions, however, the momentum dependence fur-
ther simplifies as such forces only depend on momentum
transfers, i.e. on di↵erences of Jacobi momenta:

V
loc
123 = V

loc
123(p

0 � p,q0 � q) ⌘ V
loc
123(p̃, q̃). (2)

Note that this statement refers to unregularized forces.
Below we will apply non-local regulators to the partial-
wave decomposed matrix elements. The regularization
will be discussed in more detail in Section III.

Generally, the decomposition of 3NFs in plane-wave
partial waves involves the evaluation of projection inte-
grals of the form

F
mLmlmL0ml0
LlL0l0 (p, q, p0, q0) =

Z
dp̂0

dq̂0
dp̂dq̂

⇥Y
⇤
L0mL0 (p̂

0)Y ⇤
l0ml0

(q̂0)YLmL(p̂)Ylml(q̂)V
loc
123(p̃, q̃) (3)

for fixed values of p = |p|, q = |q|, p0 = |p0|, q0 = |q0|
and the angular momentum quantum numbers. By using
symmetries, it is possible to reduce the dimensionality of
the angular integrals from 8 to 5. Traditional methods
are based on a direct discretization and numerical evalu-
ation of these angular integrals [38, 39]. Due to the large
number of external quantum numbers and momentum
mesh points such algorithms require very large computa-
tional resources for calculating all matrix elements nec-
essary for many-body studies. As a result, the number
of matrix elements of chiral N3LO interactions were so
far insu�cient for studies of nuclei and matter. However,
it is possible to evaluate the basic function F defined in
Eq. (3) in a much more e�cient way by explicitly mak-
ing use of the local nature of the 3NFs. Indeed, using
rotation invariance of the potential V loc

123 we can write it
as a function of three independent variables:

V
loc
123(p̃, q̃) = V

loc
123(p̃, q̃, cos ✓p̃q̃), (4)

where

cos ✓p̃q̃ =
p̃ · q̃
p̃q̃

, p̃ = |p̃|, q̃ = |q̃|. (5)

This already shows that the original eight dimensional
integral contains actually only three non-trivial integra-
tions. The other five integrations, after employing some
integral transformations, which are described in the ap-
pendix, can be performed analytically. The final result

van Kolck ’94; EE et al ’02

Ishikawa, Robilotta ’08; Bernard, EE, Krebs, Meißner ’08, ’11 
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LENPIC: Low Energy Nuclear Physics International Collaboration
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Determination of the LECs cD, cE

— Triton BE (cD-cE correlation)
— Explore various 3N observables and let theory and/or data decide… [talk by J. Melendez]

  Determination of cD, cE at N2LO (preliminary)
It is common to require that the 3H BE is correctly reproduced       !
       it remains to determine only one LEC cD as cE = f(cD) 

LENPIC: Low Energy Nuclear Physics International Collaboration

nd scattering length 2a [Schoen et al.’03]

nd σtot at 70 MeV [Abfalterer et al.’01]

pd minimum of dσ/dθ at 70 MeV [Sekiguchi et al.’02]

nd σtot at 108 MeV [Abfalterer et al.’01]

nd σtot at 135 MeV [Abfalterer et al.’01]

pd minimum of dσ/dθ at 135 MeV [Sekiguchi et al.’02]

pd minimum of dσ/dθ at 108 MeV [Ermisch et al.’03]
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data consistent with cD ~ 1-2

nd scattering length 2a

nd σtot at 70 MeV (derived data, assuming 1% sys. err.)

pd minimum of dσ/dθ at 70 MeV (assuming 2% sys. err.)

nd σtot at 108 MeV (derived data, assuming 1% sys. err.)

nd σtot at 135 MeV (derived data, assuming 1% sys. err.)

pd minimum of dσ/dθ at 135 MeV (assuming 2% sys. err.)

Determination of cD at N2LO, R = 0.9 fm, no additional cutoff 
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pd minimum of dσ/dθ at 108 MeV (assuming 7% sys. err.)

all data: cD = 1.7±0.8;   χ2DOF = 0.7

data up to 108 MeV: cD = 2.1±0.9;   χ2DOF = 0.5

LENPIC, 1807.02848 [based on EKM, R = 0.9 fm] 

yields the strongest constraint…

θcms θcmsθcms

dσ
/d
Ω

dσ
/d
Ω

dσ
/d
Ω

EN ~ 10 MeV EN ~ 50-150 MeV EN > 200 MeV

2NF

3NF



 Light nuclei 
EE et al. (LENPIC), arXiv:1807.02848

LENPIC: Low Energy Nuclear Physics International Collaboration
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FIG. 7: Extrapolated ground state energy for 4He (left) and 12C (right) using chiral N2LO interactions with regulator R =
1.0 fm, and SRG evolution parameters ↵ = 0.02, 0.04, and 0.08 fm4, with and without explicit 3NFs. The error bars correspond
to the extrapolation uncertainty estimates only.
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FIG. 8: (Color online) Calculated ground state energies in MeV using chiral LO, NLO, and N2LO interactions at R =
1.0 fm (blue symbols) in comparison with experimental values (red levels). The open blue symbols correspond to incomplete
calculations at N2LO using NN-only interactions. Blue error bars indicate the NCCI extrapolation uncertainty and, where
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O are o↵ the scale, but (part of) the corresponding shaded
uncertainty bar is included.

[based on the EKM potential, R = 1.0 fm] 



 Intermediate summary

The 2N sector is in a good shape: chiral potentials at N4LO+ yield nearly perfect descrip-
tion of np and pp data up to 300 MeV. No significant improvement can be achieved by 
going to even higher orders.

3NF extensively explored at N2LO. The results are promising, but the truncation error is 
still large at this order. Things to be avoided:

— optimization beyond the actual accuracy of the theory by compromising the rigor 
    (inconsistent combinations of the interactions, LECs incompatible with πN, lack of 
    error analysis, …)

— focusing on a too restricted set of observables (spectra + radii of nuclei + EOS).
    Cannot claim to understand 3NF unless Nd data are properly described. 

The quest for high-precision calculations beyond the 2N system: 
a major challenge for chiral EFT! 



 The 3NF challenge
Nd scattering studies have revealed: 
— High-precision 2N potentials alone (N4LO+, CDBonn, Nijm,
     AV18,…) yield similar predictions. 
— Good description of data at low EN (except for Ay and SST). 
— Discrepancies set in at EN ~ 50 MeV and become large at 
     EN ~ 200 MeV.

[Glöckle, Witala, Kievsky, Viviani, Deltuva, …]
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nological parametrization unfeasible.

4. Nuclear structure with chiral interactions: state of the art
Chiral EFT forces are extensively used in ab initio nuclear structure
calculations. For p-shell nuclei we mention here our EFT lattice simu-
lations [49–56], recent GFMC results [21, 23] and our studies within the
LENPIC collaboration (co-founded by the PI) [24, 57, 58] up to N2LO.
For heavier nuclei, softening the interactions via SRG transformations
[59] allows one to perform converged calculations using NCSM [13, 24],
CC [18], IM-SRG [39] and SGF theory [40]. Except for LENPIC, most
groups focus exclusively on the discrete spectrum, which, however,
yields a very limited information compared to Nd scattering.

We also mention a persistent tendency of optimizing the description
of data beyond the actual accuracy at a given order, often at the cost
of compromising the consistency/rigor and omission of error analysis,
the key features of any EFT. For example, a popular Hamiltonian used
e.g. in [18] combines the cuto↵ ⇤ = 500 MeV version of the N3LO 2NF
of [37], SRG softened with a cuto↵ ⇤ = 1.8 fm�1, with a N2LO 3NF

0.1

1

10
dσ/dΩ [mb/sr]

0.1

1

10
dσ/dΩ [mb/sr]

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

Ay
n

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

Ay
n

-0.5

-0.25

0

0.25

0.5 Ay
d

-0.5

-0.25

0

0.25

0.5 Ay
d

0

0.25

0.5

0.75

1

0 60 120 180

Ayy

θCM [deg]
0

0.25

0.5

0.75

1

0 60 120 180

Ayy

θCM [deg]

0

0.5

1

0 60 120 180

Axz

θCM [deg]

0

0.5

1

0 60 120 180

Axz

θCM [deg]

-1

-0.5

0

0.5

1

0 60 120 180

Axx

θCM [deg]

-1

-0.5

0

0.5

1

0 60 120 180

Axx

θCM [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

Kxx
y

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

Kxx
y

0

0.25

0.5

0.75

1

Ky
y

0

0.25

0.5

0.75

1

Ky
y

-0.5

-0.25

0

0.25

0.5 Kyy
y

-0.5

-0.25

0

0.25

0.5 Kyy
y

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Kxz
y

θCM [deg]

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Kxz
y

θCM [deg]
-1.5

-1

-0.5

0

0.5

1

0 60 120 180

Kxx
y - Kyy

y

θCM [deg]
-1.5

-1

-0.5

0

0.5

1

0 60 120 180

Kxx
y - Kyy

y

θCM [deg]

-0.5

-0.25

0

0.25

0.5

0.75

0 60 120 180

Py

θCM [deg]

-0.5

-0.25

0

0.25

0.5

0.75

0 60 120 180

Py

θCM [deg]Ayy, EN = 200 MeV

Kxz, EN = 135 MeVy

N4LO+  [35]
CD Bonn  [44]

Fig. 1: Examples of Nd scat-
tering observables calculated
using high-precision 2NFs.

regularized using ⇤ = 2.0 fm�1 without SRG evolution [38]. Similarly, Refs. [39, 40] employ incon-
sistent combinations of NN and 3N chiral potentials at di↵erent orders and with di↵erent functional
forms and numerical values of the cuto↵. While such models can be adjusted to reproduce the em-
pirical saturation point of nuclear matter, they cannot be justified from the EFT point of view. We
also mention the NNLOsat interaction of Ref. [60], which describes binding energies (BEs) and radii
of nuclei up to 40Ca and reproduces the nuclear matter saturation point. This is, however, achieved
by tuning the LECs to the BEs and radii of nuclei up to A = 16 and by limiting the NN data in the
fits to very low energies (< 35 MeV). On the other hand, our results show that (i) the BEs of p-shell
nuclei at N2LO come out correctly without any fine tuning [24] and (ii) the NN data allow for an
accurate determination of the NN LECs with no need to use data from heavier systems.3

5. Scientific objectives of the project and methodology
Building upon the recent groundbreaking developments by our group in the 2N sector outlined in
B1.a.2, I propose to perform a PWA of Nd scattering in the framework of chiral EFT and to deter-
mine the nuclear Hamiltonian complete up through fifth order in the chiral expansion. This would
resolve or at least provide a conclusive interpretation of the existing puzzles in the Nd continuum
in terms of possible deficiencies of the nuclear forces or inconsistent experimental data sets. The
project ultimately aims at solving the long-standing 3NF challenge in nuclear physics
and development of the state-of-the-art high-precision nuclear Hamiltonian determined
solely by the chiral symmetry of QCD and experimental information on the ⇡N, 2N and
3N systems. The resulting nuclear Hamiltonian will be used to perform precision tests in ab initio
nuclear structure calculations within the LENPIC Collaboration and made available to other groups.
We will also work out a discretized version of the Hamiltonian to be used in nuclear lattice simulations
and develop an e�cient interface between lattice QCD and chiral EFT via matching to discrete energy
spectra of few-N systems in a finite volume at variable quark masses. If successful, these studies
will help to establish a rigorous, fully
microscopic, quantitative and predic-
tive approach to nuclear structure and
reactions, firmly rooted in QCD.

The research project is naturally organized
in terms of three work packages interrelated
with each other as visualized in the figure.

WP1: Accurate & precise 
          nuclear Hamiltonian

WP2: Nuclear forces 
          from lattice QCD

WP3: Nucl. structure from 
          lattice simulations

Hamiltonian to be
discretized

functional depen-
dence of interactions on mq

neutron-neutron
interaction

mq dependence

WP1: Accurate and precise nuclear Hamiltonian
Nuclear forces derived in ChPT are singular at short distances and have to be regularized with a finite
UV cuto↵ ⇤ of the order of the breakdown scale [61–63] estimated to be ⇤b ⇠ 600 MeV [33, 64, 65]. In
practice, even lower values of ⇤ are required to keep many-body calculations tractable. It is, therefore,

3We find the theoretical uncertainty to be typically dominated by the truncation rather than statistical error [35].
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Figure 4: Left: overview of measured nd (red squares) and pd (blue circles) scattering observables.
Open symbols show data being analyzed. Right: impact of including a 3NF on the description of the
data for selected Nd observables as explained in the text. For more details/results see Ref. [40].

improve the description of the data, see our review article [40] for more examples. Thus, remarkably,
the simplest nuclear system after the two-body one is presently not understood! Moreover, contrary
to the NN sector where a number of PWA are available [31, 69–71, 82], PWA of Nd scattering is a
challenge that has never been met. One issue here is the substantial computational cost of solving the
Faddeev equations. However, the main problem concerns a tremendous amount of information entering
the 3NF5 which makes a PWA based on its solely phenomenological parametrization unfeasible.

a.i.4. Studies involving three-nucleon forces from chiral EFT

Chiral NN interactions and 3NF up to N2LO are being extensively used in ab initio nuclear structure
calculations. For p-shell nuclei we mention here our EFT lattice simulations [83–89], recent GFMC
results [17, 19] and our studies within the LENPIC collaboration (co-founded by the PI) [20, 90, 91].
For heavier nuclei, softening the interactions via SRG transformations [92] allows one to perform
converged calculations using NCSM [9, 20], CC [14], IM-SRG [35] and SGF theory [36]. Except for
LENPIC, most groups focus exclusively on the discrete spectrum, which, however, yields a very limited
information compared to Nd scattering.

We also mention a persistent tendency of optimizing the description of data beyond the actual accuracy
at a given order, often at the cost of compromising the consistency/rigor and omission of error analysis,
the key features of any EFT. For example, a popular Hamiltonian used e.g. in [14] combines the
⇤ = 500 MeV version of the N3LO 2NF of [33], SRG softened with a cuto↵ ⇤ = 1.8 fm�1, with
a N2LO 3NF regularized using ⇤ = 2.0 fm�1 without SRG evolution [34]. Similarly, Refs. [35, 36]
employ inconsistent combinations of NN and 3N chiral potentials at di↵erent orders and with di↵erent
functional forms and numerical values of the cuto↵. While such models can be adjusted to reproduce
the empirical saturation point of nuclear matter, they cannot be justified from the EFT point of view.
We also mention the NNLOsat interaction of Ref. [93], which describes BEs and radii of nuclei up to
40Ca and reproduces the nuclear matter saturation point. This is, however, achieved by tuning the
LECs to the BEs and radii of nuclei up to A = 16 and by limiting the NN data in the fits to very low
energies (< 35 MeV). On the other hand, our results show that (i) the BEs of p-shell nuclei at N2LO
come out correctly without any fine tuning [20] and (ii) the NN data lead to accurate determination
of the NN LECs with no need to use data from heavier systems.6

a.i.5. Objectives of the WP1

Our studies in the 2N system [29–31] show that chiral EFT is capable of yielding outstanding phe-
nomenology without compromising the consistency and scientific rigor e.g. by tuning the ⇡N LECs
beyond empirical values or adjusting the cuto↵ for individual terms in the Hamiltonian [14, 33–

5
The most general local NN interaction involves 6 spin-momentum operators and can be parametrized by 6 functions

of a single kinematical variable (q2
). The most general local 3NF involves 20 operators with the corresponding structure

functions depending on 3 kinematical variables [26, 27].
6
We find the theoretical uncertainty to be typically dominated by the truncation rather than statistical error [31].
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4. Nuclear structure with chiral interactions: state of the art
Chiral EFT forces are extensively used in ab initio nuclear structure
calculations. For p-shell nuclei we mention here our EFT lattice simu-
lations [49–56], recent GFMC results [21, 23] and our studies within the
LENPIC collaboration (co-founded by the PI) [24, 57, 58] up to N2LO.
For heavier nuclei, softening the interactions via SRG transformations
[59] allows one to perform converged calculations using NCSM [13, 24],
CC [18], IM-SRG [39] and SGF theory [40]. Except for LENPIC, most
groups focus exclusively on the discrete spectrum, which, however,
yields a very limited information compared to Nd scattering.

We also mention a persistent tendency of optimizing the description
of data beyond the actual accuracy at a given order, often at the cost
of compromising the consistency/rigor and omission of error analysis,
the key features of any EFT. For example, a popular Hamiltonian used
e.g. in [18] combines the cuto↵ ⇤ = 500 MeV version of the N3LO 2NF
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Fig. 1: Examples of Nd scat-
tering observables calculated
using high-precision 2NFs.

regularized using ⇤ = 2.0 fm�1 without SRG evolution [38]. Similarly, Refs. [39, 40] employ incon-
sistent combinations of NN and 3N chiral potentials at di↵erent orders and with di↵erent functional
forms and numerical values of the cuto↵. While such models can be adjusted to reproduce the em-
pirical saturation point of nuclear matter, they cannot be justified from the EFT point of view. We
also mention the NNLOsat interaction of Ref. [60], which describes binding energies (BEs) and radii
of nuclei up to 40Ca and reproduces the nuclear matter saturation point. This is, however, achieved
by tuning the LECs to the BEs and radii of nuclei up to A = 16 and by limiting the NN data in the
fits to very low energies (< 35 MeV). On the other hand, our results show that (i) the BEs of p-shell
nuclei at N2LO come out correctly without any fine tuning [24] and (ii) the NN data allow for an
accurate determination of the NN LECs with no need to use data from heavier systems.3

5. Scientific objectives of the project and methodology
Building upon the recent groundbreaking developments by our group in the 2N sector outlined in
B1.a.2, I propose to perform a PWA of Nd scattering in the framework of chiral EFT and to deter-
mine the nuclear Hamiltonian complete up through fifth order in the chiral expansion. This would
resolve or at least provide a conclusive interpretation of the existing puzzles in the Nd continuum
in terms of possible deficiencies of the nuclear forces or inconsistent experimental data sets. The
project ultimately aims at solving the long-standing 3NF challenge in nuclear physics
and development of the state-of-the-art high-precision nuclear Hamiltonian determined
solely by the chiral symmetry of QCD and experimental information on the ⇡N, 2N and
3N systems. The resulting nuclear Hamiltonian will be used to perform precision tests in ab initio
nuclear structure calculations within the LENPIC Collaboration and made available to other groups.
We will also work out a discretized version of the Hamiltonian to be used in nuclear lattice simulations
and develop an e�cient interface between lattice QCD and chiral EFT via matching to discrete energy
spectra of few-N systems in a finite volume at variable quark masses. If successful, these studies
will help to establish a rigorous, fully
microscopic, quantitative and predic-
tive approach to nuclear structure and
reactions, firmly rooted in QCD.

The research project is naturally organized
in terms of three work packages interrelated
with each other as visualized in the figure.

WP1: Accurate & precise 
          nuclear Hamiltonian

WP2: Nuclear forces 
          from lattice QCD

WP3: Nucl. structure from 
          lattice simulations

Hamiltonian to be
discretized

functional depen-
dence of interactions on mq

neutron-neutron
interaction

mq dependence

WP1: Accurate and precise nuclear Hamiltonian
Nuclear forces derived in ChPT are singular at short distances and have to be regularized with a finite
UV cuto↵ ⇤ of the order of the breakdown scale [61–63] estimated to be ⇤b ⇠ 600 MeV [33, 64, 65]. In
practice, even lower values of ⇤ are required to keep many-body calculations tractable. It is, therefore,

3We find the theoretical uncertainty to be typically dominated by the truncation rather than statistical error [35].

3

N4LO+

CD Bonn

The simplest system beyond NN is poorly understood!  [talk by Kimiko Sekiguchi]

Epelbaum Part B2 NUCLEARTHEORY

Nd break–up

y

Ay

Axz

Ayy
Axx

K
j’
i

K
y’
y

K
y’
ij

Cij

Ay

Axz

Ayy
Axx

K
j’
i

Cij

Ay
Az

K
y’
yy

Nd elastic scattering

200100

dσ

Ωd

p (N)
n

(d)d

pp

pd

p d+

200100

dσ

Ωd

p

(d)d

pp

pd

p d+

A

Ω/dσd

°=30-90c.m.θ

°=90-180c.m.θ

(BC)

-0.5 0 0.5

-0.5

0

0.5

dS2Ωd1Ω/dσ
5d

0 0.5 1.0 1.5 0 0.5-0.5
-0.5

0.5

0

0

0.5

1.0

1.5

(exp-theory)/theory  (NN)

xy,x
,C

yz,x
,C

z,x
,Cx,xC

°=0-90c.m.θ

°=90-180c.m.θ

-0.5

0

0.5
 (N)yA

0.20 0.4-0.2-0.4 0-0.5 0.5
-0.5

0.5

0
0

0.2

0.4

-0.2

-0.4

exp-theory  (NN)

ex
p-

th
eo

ry
  (

N
N

+3
N

F)
(e

xp
-t

he
or

y)
/t

he
or

y 
 (N

N
+3

N
F)

(exp-theory)/theory  (NN)

(e
xp

-t
he

or
y)

/t
he

or
y 

 (N
N

+3
N

F)

exp-theory  (NN)

ex
p-

th
eo

ry
  (

N
N

+3
N

F)

Nd elastic scattering Nd break-up
100 MeV 200 MeV 100 MeV 200 MeV

50 – 250 MeV

50 – 250 MeV

65 – 190 MeV

65 – 190 MeV

Figure 4: Left: overview of measured nd (red squares) and pd (blue circles) scattering observables.
Open symbols show data being analyzed. Right: impact of including a 3NF on the description of the
data for selected Nd observables as explained in the text. For more details/results see Ref. [40].

improve the description of the data, see our review article [40] for more examples. Thus, remarkably,
the simplest nuclear system after the two-body one is presently not understood! Moreover, contrary
to the NN sector where a number of PWA are available [31, 69–71, 82], PWA of Nd scattering is a
challenge that has never been met. One issue here is the substantial computational cost of solving the
Faddeev equations. However, the main problem concerns a tremendous amount of information entering
the 3NF5 which makes a PWA based on its solely phenomenological parametrization unfeasible.

a.i.4. Studies involving three-nucleon forces from chiral EFT

Chiral NN interactions and 3NF up to N2LO are being extensively used in ab initio nuclear structure
calculations. For p-shell nuclei we mention here our EFT lattice simulations [83–89], recent GFMC
results [17, 19] and our studies within the LENPIC collaboration (co-founded by the PI) [20, 90, 91].
For heavier nuclei, softening the interactions via SRG transformations [92] allows one to perform
converged calculations using NCSM [9, 20], CC [14], IM-SRG [35] and SGF theory [36]. Except for
LENPIC, most groups focus exclusively on the discrete spectrum, which, however, yields a very limited
information compared to Nd scattering.

We also mention a persistent tendency of optimizing the description of data beyond the actual accuracy
at a given order, often at the cost of compromising the consistency/rigor and omission of error analysis,
the key features of any EFT. For example, a popular Hamiltonian used e.g. in [14] combines the
⇤ = 500 MeV version of the N3LO 2NF of [33], SRG softened with a cuto↵ ⇤ = 1.8 fm�1, with
a N2LO 3NF regularized using ⇤ = 2.0 fm�1 without SRG evolution [34]. Similarly, Refs. [35, 36]
employ inconsistent combinations of NN and 3N chiral potentials at di↵erent orders and with di↵erent
functional forms and numerical values of the cuto↵. While such models can be adjusted to reproduce
the empirical saturation point of nuclear matter, they cannot be justified from the EFT point of view.
We also mention the NNLOsat interaction of Ref. [93], which describes BEs and radii of nuclei up to
40Ca and reproduces the nuclear matter saturation point. This is, however, achieved by tuning the
LECs to the BEs and radii of nuclei up to A = 16 and by limiting the NN data in the fits to very low
energies (< 35 MeV). On the other hand, our results show that (i) the BEs of p-shell nuclei at N2LO
come out correctly without any fine tuning [20] and (ii) the NN data lead to accurate determination
of the NN LECs with no need to use data from heavier systems.6

a.i.5. Objectives of the WP1

Our studies in the 2N system [29–31] show that chiral EFT is capable of yielding outstanding phe-
nomenology without compromising the consistency and scientific rigor e.g. by tuning the ⇡N LECs
beyond empirical values or adjusting the cuto↵ for individual terms in the Hamiltonian [14, 33–

5
The most general local NN interaction involves 6 spin-momentum operators and can be parametrized by 6 functions

of a single kinematical variable (q2
). The most general local 3NF involves 20 operators with the corresponding structure

functions depending on 3 kinematical variables [26, 27].
6
We find the theoretical uncertainty to be typically dominated by the truncation rather than statistical error [31].
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improve the description of the data, see our review article [40] for more examples. Thus, remarkably,
the simplest nuclear system after the two-body one is presently not understood! Moreover, contrary
to the NN sector where a number of PWA are available [31, 69–71, 82], PWA of Nd scattering is a
challenge that has never been met. One issue here is the substantial computational cost of solving the
Faddeev equations. However, the main problem concerns a tremendous amount of information entering
the 3NF5 which makes a PWA based on its solely phenomenological parametrization unfeasible.

a.i.4. Studies involving three-nucleon forces from chiral EFT

Chiral NN interactions and 3NF up to N2LO are being extensively used in ab initio nuclear structure
calculations. For p-shell nuclei we mention here our EFT lattice simulations [83–89], recent GFMC
results [17, 19] and our studies within the LENPIC collaboration (co-founded by the PI) [20, 90, 91].
For heavier nuclei, softening the interactions via SRG transformations [92] allows one to perform
converged calculations using NCSM [9, 20], CC [14], IM-SRG [35] and SGF theory [36]. Except for
LENPIC, most groups focus exclusively on the discrete spectrum, which, however, yields a very limited
information compared to Nd scattering.

We also mention a persistent tendency of optimizing the description of data beyond the actual accuracy
at a given order, often at the cost of compromising the consistency/rigor and omission of error analysis,
the key features of any EFT. For example, a popular Hamiltonian used e.g. in [14] combines the
⇤ = 500 MeV version of the N3LO 2NF of [33], SRG softened with a cuto↵ ⇤ = 1.8 fm�1, with
a N2LO 3NF regularized using ⇤ = 2.0 fm�1 without SRG evolution [34]. Similarly, Refs. [35, 36]
employ inconsistent combinations of NN and 3N chiral potentials at di↵erent orders and with di↵erent
functional forms and numerical values of the cuto↵. While such models can be adjusted to reproduce
the empirical saturation point of nuclear matter, they cannot be justified from the EFT point of view.
We also mention the NNLOsat interaction of Ref. [93], which describes BEs and radii of nuclei up to
40Ca and reproduces the nuclear matter saturation point. This is, however, achieved by tuning the
LECs to the BEs and radii of nuclei up to A = 16 and by limiting the NN data in the fits to very low
energies (< 35 MeV). On the other hand, our results show that (i) the BEs of p-shell nuclei at N2LO
come out correctly without any fine tuning [20] and (ii) the NN data lead to accurate determination
of the NN LECs with no need to use data from heavier systems.6

a.i.5. Objectives of the WP1

Our studies in the 2N system [29–31] show that chiral EFT is capable of yielding outstanding phe-
nomenology without compromising the consistency and scientific rigor e.g. by tuning the ⇡N LECs
beyond empirical values or adjusting the cuto↵ for individual terms in the Hamiltonian [14, 33–

5
The most general local NN interaction involves 6 spin-momentum operators and can be parametrized by 6 functions

of a single kinematical variable (q2
). The most general local 3NF involves 20 operators with the corresponding structure

functions depending on 3 kinematical variables [26, 27].
6
We find the theoretical uncertainty to be typically dominated by the truncation rather than statistical error [31].
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improve the description of the data, see our review article [40] for more examples. Thus, remarkably,
the simplest nuclear system after the two-body one is presently not understood! Moreover, contrary
to the NN sector where a number of PWA are available [31, 69–71, 82], PWA of Nd scattering is a
challenge that has never been met. One issue here is the substantial computational cost of solving the
Faddeev equations. However, the main problem concerns a tremendous amount of information entering
the 3NF5 which makes a PWA based on its solely phenomenological parametrization unfeasible.

a.i.4. Studies involving three-nucleon forces from chiral EFT

Chiral NN interactions and 3NF up to N2LO are being extensively used in ab initio nuclear structure
calculations. For p-shell nuclei we mention here our EFT lattice simulations [83–89], recent GFMC
results [17, 19] and our studies within the LENPIC collaboration (co-founded by the PI) [20, 90, 91].
For heavier nuclei, softening the interactions via SRG transformations [92] allows one to perform
converged calculations using NCSM [9, 20], CC [14], IM-SRG [35] and SGF theory [36]. Except for
LENPIC, most groups focus exclusively on the discrete spectrum, which, however, yields a very limited
information compared to Nd scattering.

We also mention a persistent tendency of optimizing the description of data beyond the actual accuracy
at a given order, often at the cost of compromising the consistency/rigor and omission of error analysis,
the key features of any EFT. For example, a popular Hamiltonian used e.g. in [14] combines the
⇤ = 500 MeV version of the N3LO 2NF of [33], SRG softened with a cuto↵ ⇤ = 1.8 fm�1, with
a N2LO 3NF regularized using ⇤ = 2.0 fm�1 without SRG evolution [34]. Similarly, Refs. [35, 36]
employ inconsistent combinations of NN and 3N chiral potentials at di↵erent orders and with di↵erent
functional forms and numerical values of the cuto↵. While such models can be adjusted to reproduce
the empirical saturation point of nuclear matter, they cannot be justified from the EFT point of view.
We also mention the NNLOsat interaction of Ref. [93], which describes BEs and radii of nuclei up to
40Ca and reproduces the nuclear matter saturation point. This is, however, achieved by tuning the
LECs to the BEs and radii of nuclei up to A = 16 and by limiting the NN data in the fits to very low
energies (< 35 MeV). On the other hand, our results show that (i) the BEs of p-shell nuclei at N2LO
come out correctly without any fine tuning [20] and (ii) the NN data lead to accurate determination
of the NN LECs with no need to use data from heavier systems.6

a.i.5. Objectives of the WP1

Our studies in the 2N system [29–31] show that chiral EFT is capable of yielding outstanding phe-
nomenology without compromising the consistency and scientific rigor e.g. by tuning the ⇡N LECs
beyond empirical values or adjusting the cuto↵ for individual terms in the Hamiltonian [14, 33–

5
The most general local NN interaction involves 6 spin-momentum operators and can be parametrized by 6 functions

of a single kinematical variable (q2
). The most general local 3NF involves 20 operators with the corresponding structure

functions depending on 3 kinematical variables [26, 27].
6
We find the theoretical uncertainty to be typically dominated by the truncation rather than statistical error [31].
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improve the description of the data, see our review article [40] for more examples. Thus, remarkably,
the simplest nuclear system after the two-body one is presently not understood! Moreover, contrary
to the NN sector where a number of PWA are available [31, 69–71, 82], PWA of Nd scattering is a
challenge that has never been met. One issue here is the substantial computational cost of solving the
Faddeev equations. However, the main problem concerns a tremendous amount of information entering
the 3NF5 which makes a PWA based on its solely phenomenological parametrization unfeasible.

a.i.4. Studies involving three-nucleon forces from chiral EFT

Chiral NN interactions and 3NF up to N2LO are being extensively used in ab initio nuclear structure
calculations. For p-shell nuclei we mention here our EFT lattice simulations [83–89], recent GFMC
results [17, 19] and our studies within the LENPIC collaboration (co-founded by the PI) [20, 90, 91].
For heavier nuclei, softening the interactions via SRG transformations [92] allows one to perform
converged calculations using NCSM [9, 20], CC [14], IM-SRG [35] and SGF theory [36]. Except for
LENPIC, most groups focus exclusively on the discrete spectrum, which, however, yields a very limited
information compared to Nd scattering.

We also mention a persistent tendency of optimizing the description of data beyond the actual accuracy
at a given order, often at the cost of compromising the consistency/rigor and omission of error analysis,
the key features of any EFT. For example, a popular Hamiltonian used e.g. in [14] combines the
⇤ = 500 MeV version of the N3LO 2NF of [33], SRG softened with a cuto↵ ⇤ = 1.8 fm�1, with
a N2LO 3NF regularized using ⇤ = 2.0 fm�1 without SRG evolution [34]. Similarly, Refs. [35, 36]
employ inconsistent combinations of NN and 3N chiral potentials at di↵erent orders and with di↵erent
functional forms and numerical values of the cuto↵. While such models can be adjusted to reproduce
the empirical saturation point of nuclear matter, they cannot be justified from the EFT point of view.
We also mention the NNLOsat interaction of Ref. [93], which describes BEs and radii of nuclei up to
40Ca and reproduces the nuclear matter saturation point. This is, however, achieved by tuning the
LECs to the BEs and radii of nuclei up to A = 16 and by limiting the NN data in the fits to very low
energies (< 35 MeV). On the other hand, our results show that (i) the BEs of p-shell nuclei at N2LO
come out correctly without any fine tuning [20] and (ii) the NN data lead to accurate determination
of the NN LECs with no need to use data from heavier systems.6

a.i.5. Objectives of the WP1

Our studies in the 2N system [29–31] show that chiral EFT is capable of yielding outstanding phe-
nomenology without compromising the consistency and scientific rigor e.g. by tuning the ⇡N LECs
beyond empirical values or adjusting the cuto↵ for individual terms in the Hamiltonian [14, 33–

5
The most general local NN interaction involves 6 spin-momentum operators and can be parametrized by 6 functions

of a single kinematical variable (q2
). The most general local 3NF involves 20 operators with the corresponding structure

functions depending on 3 kinematical variables [26, 27].
6
We find the theoretical uncertainty to be typically dominated by the truncation rather than statistical error [31].
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improve the description of the data, see our review article [40] for more examples. Thus, remarkably,
the simplest nuclear system after the two-body one is presently not understood! Moreover, contrary
to the NN sector where a number of PWA are available [31, 69–71, 82], PWA of Nd scattering is a
challenge that has never been met. One issue here is the substantial computational cost of solving the
Faddeev equations. However, the main problem concerns a tremendous amount of information entering
the 3NF5 which makes a PWA based on its solely phenomenological parametrization unfeasible.

a.i.4. Studies involving three-nucleon forces from chiral EFT

Chiral NN interactions and 3NF up to N2LO are being extensively used in ab initio nuclear structure
calculations. For p-shell nuclei we mention here our EFT lattice simulations [83–89], recent GFMC
results [17, 19] and our studies within the LENPIC collaboration (co-founded by the PI) [20, 90, 91].
For heavier nuclei, softening the interactions via SRG transformations [92] allows one to perform
converged calculations using NCSM [9, 20], CC [14], IM-SRG [35] and SGF theory [36]. Except for
LENPIC, most groups focus exclusively on the discrete spectrum, which, however, yields a very limited
information compared to Nd scattering.

We also mention a persistent tendency of optimizing the description of data beyond the actual accuracy
at a given order, often at the cost of compromising the consistency/rigor and omission of error analysis,
the key features of any EFT. For example, a popular Hamiltonian used e.g. in [14] combines the
⇤ = 500 MeV version of the N3LO 2NF of [33], SRG softened with a cuto↵ ⇤ = 1.8 fm�1, with
a N2LO 3NF regularized using ⇤ = 2.0 fm�1 without SRG evolution [34]. Similarly, Refs. [35, 36]
employ inconsistent combinations of NN and 3N chiral potentials at di↵erent orders and with di↵erent
functional forms and numerical values of the cuto↵. While such models can be adjusted to reproduce
the empirical saturation point of nuclear matter, they cannot be justified from the EFT point of view.
We also mention the NNLOsat interaction of Ref. [93], which describes BEs and radii of nuclei up to
40Ca and reproduces the nuclear matter saturation point. This is, however, achieved by tuning the
LECs to the BEs and radii of nuclei up to A = 16 and by limiting the NN data in the fits to very low
energies (< 35 MeV). On the other hand, our results show that (i) the BEs of p-shell nuclei at N2LO
come out correctly without any fine tuning [20] and (ii) the NN data lead to accurate determination
of the NN LECs with no need to use data from heavier systems.6

a.i.5. Objectives of the WP1

Our studies in the 2N system [29–31] show that chiral EFT is capable of yielding outstanding phe-
nomenology without compromising the consistency and scientific rigor e.g. by tuning the ⇡N LECs
beyond empirical values or adjusting the cuto↵ for individual terms in the Hamiltonian [14, 33–

5
The most general local NN interaction involves 6 spin-momentum operators and can be parametrized by 6 functions

of a single kinematical variable (q2
). The most general local 3NF involves 20 operators with the corresponding structure

functions depending on 3 kinematical variables [26, 27].
6
We find the theoretical uncertainty to be typically dominated by the truncation rather than statistical error [31].
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                              Phenomenological 3NFs do not help. χEFT    
     3NF@N2LO inconclusive (too large uncertainty).

One needs to push chiral EFT to N4LO and perform a PWA of Nd scattering (similar to NN).
Computational (2[N2LO]  +  >10[N4LO] LECs) & conceptual (consistent regularization) challenges! 
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on π-parametrization

— may encounter χ-symmetry breaking diver-
     gences (ambiguous). Using DR to compute 
     3NFs/currents and cutoff in ladder graphs 
     (iterations) is problematic. 
— naive cutoff regularization breaks χ-symmetry (dependence on π-parametrization). 

These issues affect >2N forces & exchange currents beyond tree level (i.e. beyond N2LO)! 

Solution: higher-derivative regularization [Slavnov, Nucl. Phys. B31 (1971) 301]

(designed to coincide with the employed local regularization in the NN sector)
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Requires recalculation of the loop contributions to the 3NF/exchange currents (in progress)

Hermann Krebs et al.
(preliminary)



 IB effects and precision few-N physics

CSB nuclear forces and the BE difference of 3H and 3He

Friar et al., PRC 71 (2005) 024003

Neutron-neutron scattering length from few-N reactions

IB and few-N’s: applications/open topics
Charge-symmetry-breaking nuclear forces and BE differences in 3He–3H

Friar et  al. PRC 71 (2005) 024003

Extraction of the neutron-neutron scattering length from few-N reactions
(Howell et al. ’98)

(Gonzales Trotter et al. ’99)

(Huhn et al. ’00)

— FSI cross section rather in-
sensitive to the choice of
NN interaction;

— np scattering length ex-
tracted in the same way
agrees with the data…

— 3NF effects seem to be
negligible;

π— + 2H → n + n + γ

n + 2H → n + n + p
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calculations agree well with existing data, we elected to
use calculated cross sections rather than experimental data
in the luminosity determination. This technique reduced
the sensitivity of our measurements to system deadtimes
and absolute detection efficiencies.
The width of the coincidence window in the event-

trigger circuit was 400 ns and allowed for the concurrent
measurements of true breakup events and events due to
the accidental coincidences between signals from the CD
and the neutron detectors. All events that satisfied conser-
vation of energy within 62 MeV were projected into 0.5-
MeV-wide bins along the point-geometry kinematic locus.
The distance along the kinematic curve of En1 versus En2,
where En1 and En2 are the energies of the two emitted neu-
trons, will be referred to as S. The value of S is set to zero
at the point where En2 ! 0 and increases as one moves
counterclockwise around the locus. The true + accidental
and accidental events were projected onto the ideal locus
separately. The projection was done using the minimum-
distance technique described by Finckh et al. [11]. The
true events were obtained by subtracting accidental from
true + accidental events.
The measured cross sections were compared to Monte

Carlo (MC) simulations that included the energy resolu-
tion and the finite geometry of the experimental setup.
The basis of these simulations was theoretical point-
geometry cross-section libraries generated for a range of
anp !ann" values at incident neutron energies of 12.8, 13.0,
and 13.2 MeV. The point-geometry cross sections were
obtained from transition matrix elements of the breakup
operator U0,

U0 ! !1 1 P"T̃ , (1)
where the T̃ operator sums up all multiple scattering
contributions through the three-nucleon (3N) Faddeev
integral equation,
T̃ jf# ! tPjf# 1 !1 1 tG0"V !1"

4 !1 1 P"jf#
1 tPG0T̃ jf# 1 !1 1 tG0"V !1"

4 !1 1 P"G0T̃ jf# .
(2)

Here G0 is the free 3N propagator, t is the NN t matrix,
and operator P is the sum of a cyclical and anticyclical
permutation of three nucleons. In the generation of the
libraries, the terms containing V4, the 3NF potential, were
set to zero.
The cross-section libraries were obtained using the

Bonn-B (OBEPQ) NN potential [12]. This potential is
fitted in the 1S0 state to the experimentally determined
value of anp . The charge-independence breaking in the
1S0 NN force is imposed by using for the 1S0 nn
force, the version of the Bonn-B potential [12] that
was fitted to pp data. To account for charge-symmetry
breaking in the calculations, the total 3N isospin T ! 3$2
admixture has been included [13]. For the purpose of this
analysis, modifications of the 1S0 NN interaction were
accomplished by adjusting the s-meson coupling constant
g2

s$4p [12]. In this way 1S0 np !nn" interactions with
different np !nn" scattering lengths were generated.

Simulated cross sections in comparison to our data for
28.0± are shown in Figs. 2 and 3 for several values of
anp and ann, respectively. A value of aNN and its sta-
tistical uncertainty were determined for each detector-pair
configuration using a single-parameter (either anp or ann)
minimum-x2 fit to the absolute cross-section data. The
results are given in Table I. The uncertainties listed in
Table I are statistical only. The systematic uncertainties
in our determinations are 60.8 fm for anp and 60.6 fm
for ann. Uncertainties in the neutron detector efficien-
cies and the integrated target-beam luminosity account for
about 80% of the systematic uncertainty.
We observed no significant angle dependence in anp ,

and the consistency in the ann data from one angle to
the next is statistically acceptable. Combining the statis-
tical and systematic uncertainties in quadrature, we ob-
tain anp ! 223.5 6 0.8 fm and ann ! 218.7 6 0.6 fm.
Our result for anp is in agreement with the value of anp
(223.748 6 0.009 fm [8]) obtained from free np scat-
tering measurements. We use this result to set an up-
per limit on the influence of 3NF on the value of NN
scattering lengths determined from our experiment, i.e.,
Da3NF

np # and
np 2 a

free
np ! 0.2 6 0.8 fm, where free and

nd refer to values obtained from data for free np scatter-
ing and from nd breakup, respectively. This result is con-
sistent with zero. Scaling our result for anp by the ratio of
ann to anp , we obtain the upper limit due to 3NF effects
in the nd breakup reaction to be Da3NF

nn # 0.2 6 0.6 fm,
which is also consistent with zero.
We estimated possible effects of 3NF on np FSI cross

sections using the TM 3NF model. The calculations were
performed by solving Eq. (2) using four modern NN po-
tentials: AV18 [3], CD Bonn [14], NijmI, and NijmII [15].

FIG. 2. Cross sections for unp ! 28.0± !un1 ! 28.0±, un2 !
83.5±, f12 ! 180±". The points are the data from this work.
The curves are MC simulations based on nd calculations made
with four values of anp : 222.0, 223.0, 223.75, and 225.0 fm.
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FIG. 3. Cross sections for unn ! 28.0± !un1 ! un2 !
28.0±, f12 ! 0±". The points are the data from the present
work. The curves are MC simulations based on nd calculations
made with three values of ann: 217.7, 218.0, and 219.0 fm.

In each calculation the 2p-exchange TM 3NF potential
[7] was included as V4, which was split into three parts
where each one was symmetrical under the exchange of
two particles. In our calculations the strong cutoff pa-
rameter L in the TM 3NF model was adjusted separately
for each NN potential to reproduce the experimental triton
binding energy [16]. For details of the formalism and the
numerical treatment refer to Refs. [10,17]. At all angles
and for all potentials the change in the calculated cross
section due to the addition of the TM 3NF never exceeds
6%. For the np FSI production angles of the present ex-
periment, the cross-section difference is between 1% and
4%, which corresponds to a theoretical range of !Da3NF

np "th
from 20.8 to 20.2 fm. Our experimentally determined
Da3NF

np is within two standard deviations of the predic-
tions using any of the four NN potentials with the TM
3NF adjusted to fit the triton binding energy.
In summary, our measured values are anp ! 223.5 6

0.8 fm and ann ! 218.7 6 0.6 fm. Magnetic interac-

TABLE I. The anp and ann values extracted from the fit to
the present data for the absolute NN FSI cross section in nd
breakup at the angles measured in the present study. The x2

per datum for the best is given at each angle. The weighted
mean of the data for all angles is given in the bottom. All un-
certainties are statistical only.

anp 6 Danp ann 6 Dann
uNN (fm) x2#pt (fm) x2#pt
43.0± 223.6 6 0.3 2.1 218.8 6 0.4 1.5
35.5± 223.2 6 0.3 2.7 217.7 6 0.4 0.6
28.0± 223.7 6 0.3 3.0 218.8 6 0.2 0.1
20.5± · · · · · · 218.9 6 0.2 0.8
Mean 223.5 6 0.2 2.6 218.7 6 0.1 0.6

tions were not considered in our analysis. Their possible
effects [18] have to be studied. By comparing our results
for anp to the recommended value from np free scattering
and scaling by the ratio of ann to anp , we set an upper limit
of Da3NF

nn ! 0.2 6 0.6 fm on the contribution of 3NF ef-
fects on our value of ann. Although the experimental re-
sults suggest an opposite sign for Da3NF

np than predicted
using the TM 3NF, our value is consistent with the theo-
retical predictions within the reported uncertainties. Since
our value for anp obtained from nd breakup agrees with
that from free np scattering, we conclude that our investi-
gation of the nn FSI done under identical conditions should
lead to a valid measure of ann. Our value for ann is in
agreement with the recommended value [2], which comes
from p2d capture measurements, and disagrees with val-
ues obtained from earlier nd breakup studies [1].
This work was supported in part by the U.S. Depart-

ment of Energy, Office of High Energy and Nuclear
Physics, under Grant No. DE-FG02-97ER41033, by the
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Can reproduce 2and using ann ~ —16.5 fm!  Alternatives (3NF beyond N2LO, IB effects) need to be checked.

Can one then still understand the BE differences of mirror nuclei?



 Radii of medium-mass nuclei:  A smoking gun?

Calculations are incomplete: 3NFs beyond N2LO and MECs are missing…

Preliminary results indicate that radii of heavier nuclei are underestimated (~ 15% for 16O)

What could be the reason that the N2LO potentials by Ekström et al. are doing a good job?
NNLOsat: rD = 1.978 fm (+0.13%) ΔNNLO(450): rD = 1.982 fm (+0.3%)

However, NN data seem to prefer smaller rD:

rD, 2H (fm) rp, 3H (fm) rp, 4He (fm)

AV18/AV18+UIX 1.967 (�0.4%) 1.584 (�1%) 1.44 (�2%)

RKE N4LO+ Granada PWA (�-shell) Nijm I Nijm II Reid93 CD-Bonn Exp.

rD, 2H (fm) 1.965 . . . 1.968 1.965 1.967 1.968 1.969 1.966 1.975

PD =

Z 1

0

drw
2(r) (33)

���1 �
cot �Ri(k)

cot �Rj(k)

��� (34)

13

Ekström et al., PRC91 (2015) 051301 Ekström et al., PRC97 (2018) 024332

High-precision 2NF + 3NF yield similar results in light nuclei, deviations increase with A 

rD, 2H (fm) rp, 3H (fm) rp, 4He (fm)

AV18 + UIX 1.967 (�0.4%) 1.584 (�1%) 1.44 (�2%)

CD-Bonn + TM99 1.966 1.42

N
4
LO

+
+ 3NF@N

2
LO 1.967 1.580 1.43

RKE N4LO+ Granada PWA (�-shell) Nijm I Nijm II Reid93 CD-Bonn Exp.

rD, 2H (fm) 1.965 . . . 1.968 1.965 1.967 1.968 1.969 1.966 1.975

Elab bin CD-Bonn — Idaho N3LO — — improved chiral potentials at N3LO, this work —
(MeV) (500) (600) R = 0.8 fm R = 0.9 fm R = 1.0 fm R = 1.1 fm R = 1.2 fm

neutron-proton phase shifts
0–100 0.6 1.7 5.2 0.8 0.7 0.6 0.7 1.4
0–200 0.6 2.2 5.3 0.8 0.7 0.6 0.8 1.8
0–300 0.6 3.3 6.8 2.1 1.5 1.8 4.0 10.7

proton-proton phase shifts
0–100 0.5 1.5? 6.7? 1.8 0.8 0.5 1.2 4.6
0–200 1.3 2.9? 11.7? 2.1 0.7 0.6 2.2 8.2
0–300 1.3 5.9? 30.0? 12.0 3.2 7.0 24.5 66.8

?The 1
S0 partial wave has not been taken into account.
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Can the remaining discrepancies be removed by MECs?

Work in progress: calculations of the EM FFs of A = 2…16 nuclei including consistent MECs
with Vadim Baru, Arseniy Filin, Daniel Möller + LENPIC Collaboration 



The most precise NN forces finally come from chiral EFT

 Summary and outlook

Pushing the accuracy/precision frontier in >2N systems requires addressing 
the 3NF problem: A computational and conceptual challenge

Exciting field full of opportunities, unsolved problems and puzzles!

—  hope to provide some answers at  CD21 :-)  — 
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