Evgeny Epelbaum, RUB

9th International Workshop on Chiral Dynamics (CD18) September 17-21, 2018, Durham, NC, USA

High-precision nuclear forces from chiral EFT: Where do we stand?

Introduction PWA of NN data in chiral EFT Beyond NN: challenges and open problems

DEG

From QCD to nuclei

From chiral Lagrangians to nuclei

- Step 1: Derive nuclear forces and currents in ChPT [Method of UT, S-matrix matching, TOPT]. Nontrivial: ensure renormalizability of the nuclear potentials...
- **Step 2:** Introduce a cutoff Λ which in a nonrelativistic approach must be kept finite, $\Lambda \sim \Lambda_b$ [Lepage '97; EE, Meißner '06; EE, Gegelia '09]. Nontrivial: symmetries...
- **Step 3:** PWA of NN scattering data to fix bare LECs $C_i(\Lambda)$ (i.e. implicit renormalization)
- Step 4: Compute observables using ab initio methods [FY, Lattice, NCSM, GFMC, CC, IMSRG, ...] (talks by Maria Piarulli, Saori Pastore) and perform error analysis

Renormalization, power counting and all that

- EE, Gegelia, Meißner, NPB 925 (2017) 161: identified renormalization conditions yielding a consistent expansion for systems close to the unitary limit with NDA scaling of LECs (W. counting). No contradiction with the KSW/RG-based counting (different renormalization conditions).
- A renormalizable formulation based on the Lorenz-invariant L_{eff} is available (requires contributions beyond V_{LO} to be treated perturbatively) EE, Gegelia PLB 716 (2012) 338.
- For a general discussion see materials of the KITP Program Frontiers in Nuclear Physics (2016): http://online.kitp.ucsb.edu/online/nuclear16/

Chiral expansion of the nuclear forces [W-counting]

— <u>Consistent</u> vector, axial, pseudoscalar currents at N³LO (2-loop/1-loop/tree for 1N/2N/3N) talk by H. Krebs

- A similar program is being pursued in chiral EFT with explicit $\Delta(1232)$ Kaiser et al.; Krebs, Gasparyan, EE, Meißner

Determination of πN LECs

Matching ChPT to πN Roy-Steiner equations

Hoferichter, Ruiz de Elvira, Kubis, Meißner, PRL 115 (2015) 092301

- χ expansion of the π N amplitude expected to converge best within the Mandelstam triangle
- Subthreshold coefficients (from RS analysis) provide a natural matching point to ChPT

 $ar{X} = \sum_{m,n} x_{mn} \,
u^{2m+k} t^n, \qquad X = \{A^{\pm}, \, B^{\pm}\}$

Closer to the kinematics relevant for nuclear forces...

[talks by Jacobo Ruiz de Elvira, Martin Hoferichter]

Relevant LECs (in GeV⁻ⁿ) extracted from π N scattering

	c_1	c_2	C ₃	c_4	$ar{d_1}+ar{d_2}$	$ar{d}_3$	$ar{d}_5$	$ar{d}_{14}-ar{d}_{15}$	$ar{e}_{14}$	$ar{e}_{17}$	
$[Q^4]_{ m HB,NN},{ m GW}$ PWA	-1.13	3.69	-5.51	3.71	5.57	-5.35	0.02	-10.26	1.75	-0.58	Krebs, Gasparyan, EE
$[Q^4]_{ m HB,NN}, m KH$ PWA	-0.75	3.49	-4.77	3.34	6.21	-6.83	0.78	-12.02	1.52	-0.37	PRC85 (12) 054006
$[Q^4]_{\rm HB, NN}$, Roy-Steiner	-1.10	3.57	-5.54	4.17	6.18	-8.91	0.86	-12.18	1.18	-0.18	Hoferichter et al., PRL 115 (15) 092301
$[Q^4]_{ m covariant},{ m data}$	-0.82	3.56	-4.59	3.44	5.43	-4.58	-0.40	-9.94	-0.63	-0.90	Siemens et al., PRC94 (16) 014620

- Some LECs show sizable correlations (especially c_1 and c_3)...
- EKM N⁴LO [EE, Krebs, Meißner, PRL 115 (2015) 122301]: Q⁴ fit to KH PWA
- RKE N⁴LO [Reinert, Krebs, EE, EPJA 54 (2018) 88]: Q⁴ fit to RS and Q⁴ fit to KH PWA

With the LECs taken from π N, the long-range NN force is fixed in a parameter-free way

Regularization

The cutoff Λ has to be kept finite, $\Lambda \sim \Lambda_b$. In practice, even low values of Λ are preferred:

- many-body methods require soft interactions,
- spurious deeply-bound states for $\Lambda > \Lambda^{crit}$ make calculations for A > 3 unfeasible...

 \rightarrow it is crucial to employ a regulator that minimizes finite- Λ artifacts!

Nonlocal:
$$V_{1\pi}^{\text{reg}} \propto \frac{e^{-\frac{p'^4+p^4}{\Lambda^4}}}{\vec{q}^2 + M_{\pi}^2} \longrightarrow \frac{1}{\vec{q}^2 + M_{\pi}^2} \underbrace{\left(1 - \frac{p'^4 + p^4}{\Lambda^4} + \mathcal{O}(\Lambda^{-8})\right)}_{\text{affect long-range interactions...}} \overset{\text{EE, Glöckle, Meißner '04;}}{\underset{\text{Entem, Machleidt '03;}}{\underset{\text{Entem, Machleidt, Nosyk '17; ...}}}$$

 $\begin{aligned} & \left| \text{Local:}(\text{indeference}_{\Lambda^2}^{-\frac{q^2+M_{\pi}^2}{\Lambda^2}} + M_{\pi}^2) + \text{short-range terms} \right| \quad \text{Reinert, Krebs, EE '18;} \\ & \text{Inspired by} \\ & \text{Thomas Rijken} \\ & \quad \end{pmatrix} \\ & \quad$

Regularization

Regularized 2π -exchange potential: $W_{C,\Lambda}(q) = e^{-\frac{q^2}{2\Lambda^2}} \frac{2}{\pi} \int_{2M_{\pi}^2}^{\infty} \mu \, d\mu \, \frac{\rho(\mu)}{q^2 + \mu^2} e^{-\frac{\mu^2}{2\Lambda^2}}$

Various regularization approaches

Does it matter in practice?

Contact interactions

Weinberg's counting:

N ⁴ LO [Q ⁵]: no new isospin-conserving operators		LO [Q ⁰]: NLO [Q ²]: N ² LO [Q ³]: N ³ LO [Q ⁴]: N ⁴ LO [Q ⁵]: N ⁴ L O+ [Q ⁶]:	 2 operators (S-waves) + 7 operators (S-, P-waves and ε₁) no new isospin-conserving operators + 16 Φ2 operators (S-, (S-, D-, V2+VCE)(CS, 2€1,2)) no new isospin-conserving operators + 4 E-wave operators
N ⁴ LO ⁺ [Q ⁶]: + 4 F-wave operators	•	N4LO+ [Q6]:	+ 4 F-wave operators

- Use a simple nonlocal Gaussian regulator for contacts with $\Lambda = 350...500$ MeV
- Fits @N³LO & beyond indicate some redundancy [Hammer, Furnstahl; Beane, Savage, Wesolowski et al.]

 $\langle {}^1S_0,\,p'|V_{
m cont}|{}^1S_0,\,p
angle \ = \ ilde{C}_{1S0} + C_{1S0}(p^2+p'^2) + D_{1S0}\,p^2p'^2 + D_{1S0}^{
m off}\,(p^2-p'^2)^2$ $\langle {}^{3}S_{1}, \, p' | V_{
m cont} | {}^{3}S_{1}, \, p
angle \ = \ ilde{C}_{3S1} + C_{3S1} (p^{2} + p'^{2}) + D_{3S1} \, p^{2} p'^{2} + D_{2S1}^{
m off} \, (p^{2} - p'^{2})^{2}$ $\langle {}^{3}S_{1}, \, p' | V_{
m cont} | {}^{3}D_{1}, \, p \rangle \; = \; C_{\epsilon 1} p^{2} + D_{\epsilon 1} \, p^{2} p'^{2} + D_{\epsilon 1}^{
m off} \, p^{2} (p^{2} - p'^{2})$

(Short-range) UTs $U = e^{\gamma_1 T_1 + \gamma_2 T_2 + \gamma_3 T_3}$ with

 $T_1 = ec k \cdot ec q, \qquad T_2 = ec k \cdot ec q \ ec \sigma_1 \cdot ec \sigma_2, \qquad T_3 = ec \sigma_1 \cdot ec k \ ec \sigma_2 \cdot ec q \ + \ 1 \leftrightarrow 2.$

Induced terms in the Hamiltonian: $\delta H = U^{\dagger}HU - H^{(0)} = \sum_{i} \gamma_{i} \left[H_{kin}^{(0)}, T_{i} \right] + \dots$ have the form of $V_{cont}^{(4)} \rightarrow 3$ terms can be eliminated (modulo higher-order terms...)

The UT also affects short-range 3NFs and currents starting from N⁴LO. Changing the offshell behavior of the interaction in a controlled way is a useful tool!

Partial wave analysis of NN data

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

- To fix NN contact interactions, use scattering data together with B_d = 2.224575(9) MeV and b_{np} = 3.7405(9) fm.
- Since 1950-es, about 3000 proton-proton + 5000 neutron-proton scattering data below 350 MeV have been collected.
- However, certain data are mutually incompatible within errors and have to be rejected.
 2013 Granada database [Navarro-Perez et al., PRC 88 (2013) 064002], rejection rate: 31% np, 11% pp: 2158 proton-proton + 2697 neutron-proton data below E_{lab} = 300 MeV

• Incomplete treatment of IB effects: $V_{\gamma} + V_{1\pi} + V_{cont} (^{1}S_{0})$

Partial wave analysis of NN data

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

- For the first time, chiral EFT potentials qualify for being regarded as PWA - Clear evidence of the parameter-free chiral 2π exchange

Partial wave analysis of NN data

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

χ^2 /datum for the description of the Granada-2013 database: χ EFT vs. phenomenology

$E_{ m lab}~{ m bin}$	CD Bonn ₍₄₃₎	Nijm I ₍₄₁₎	Nijm II ₍₄₇₎	Reid93 ₍₅₀₎	$N^4LO^+_{(27+1)}$, this work
neutron-pr	coton scattering dat	ta			
0 - 100	1.08	1.06	1.07	1.08	1.07
0 - 200	1.08	1.07	1.07	1.09	1.07
0 - 300	1.09	1.09	1.10	1.11	1.06
proton-pro	oton scattering data	ı			
0 - 100	0.88	0.87	0.87	0.85	0.86
0 - 200	0.98	0.99	1.00	0.99	0.95
0 - 300	1.01	1.05	1.06	1.04	1.00

N⁴LO⁺: semilocal (Reinert, Krebs, EE) vs. nonlocal (Entem, Machleidt, Nosyk)

Error analysis P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

1. Truncation error EE, Krebs, Meißner, EPJA 51 (2015) 53

proton-neutron scattering at Elab=143 MeV

p%

Error analysis P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

In most cases, the uncertainty is dominated by truncation errors. At N⁴LO and at very low energies, other sources of errors become comparable (especially π N LECs...).

Example: deuteron asymptotic normalizations (relevant for nuclear astrophysics)

Our determination:

$$\begin{array}{rcl} & & \text{truncation error} & & & & \pi \text{N LECs} \\ & & \text{statistical error} & & & & & & & & \\ & & & A_S &= & 0.8847^{(+3)}_{(-3)}(3)(5)(1) \text{ fm}^{-1/2} \\ & & \eta \equiv \frac{A_D}{A_S} \, = \, 0.0255^{(+1)}_{(-1)}(1)(4)(1) \end{array}$$

Exp: $A_S = 0.8781(44) \, {
m fm}^{-1/2}, \quad \eta = 0.0256(4)$ Borbely et al. '85 Rodning, Knutson '90

Nijmegen PWA [errors are "educated guesses"] Stoks et al. '95 $A_S = 0.8845(8) \text{ fm}^{-1/2}, \quad \eta = 0.0256(4)$

Granada PWA [errors purely statistical] Navarro Perez et al. '13 $A_S = 0.8829(4)~{
m fm}^{-1/2}, ~~\eta = 0.0249(1)$

Isospin-breaking effects talk

talk by Patrick Reinert

chiral order	two-nucleon forces	three-nucleon forces		
NLO $[Q^2]$	$V_{1\gamma} + V_{1\pi}$ The only unknown LECs up to N ⁴ LO are	_		
${ m N^2LO}~[Q^3]$	$V_{1\pi} + V_{\text{cont}}$ constants and V _{cont}	—		
${ m N^3LO}~[Q^4]$	$V_{1\gamma} \;+\; V_{\pi\gamma} \;+\; V_{1\pi} \;+\; V_{2\pi} \;+\; V_{ m cont}$	$V_{2\pi}~+~V_{1\pi-{ m cont}}$		
${ m N^4LO}~[Q^5]$	$V_{1\pi} \;+\; V_{2\pi} \;+\; V_{ m cont}$	$V_{2\pi}~+~V_{1\pi-{ m cont}}$		

Charge dependence of the πN couplings

talk by Patrick Reinert

 $f_{p}^{2}\equiv f_{\pi^{0}pp}f_{\pi^{0}pp}, \qquad f_{0}^{2}\equiv -f_{\pi^{0}nn}f_{\pi^{0}pp}, \qquad 2f_{c}^{2}\equiv f_{\pi^{-}pn}f_{\pi^{+}np}$ Notation:

Goldberger-Miyazawa-Oehme (GMO) sum rule [Ericson et al. '02]

fixed-t dispersial relations [Arndt et al. '06]

 π -d scattering + GMO sum rule [Baru et al. '11]

NN PWA by the Nijmegen Group [Klomp, Stoks, de Swart '91]

- np + pp data up to E_{lab} = 350 MeV

$$- V_{\gamma} + V_{1-boson} + V_{phen}$$

[Rentmeester et al. '99] - pp data, including 2π -exchange from xEFT

NN PWA by the Granada Group [Navarro-Perez, Amaro, Ruiz Arriola '17]

- Granada-2013 np + pp database
- E_{lab} = 0...350 MeV
- $V_{\gamma} + V_{1\pi} + \delta$ -shells

Beyond the two-nucleon system

UNIVERSITÄT

DARMSTADT

universität**bonn**

JAGIELLONIAN UNIVERSITY IN KRAKOW

 \boldsymbol{E} pd minimum of do/dheta at 135 MeV [Sekiguchitet al.' $^{21}_{Q_d^{LO}}=0.271\,{
m fm}^{2.826}$ (nd σ_{tot} at 135 MeV [Abfalterer et al.'0] $\mathcal{L}^{\text{LO}} = 0.826 T (e \pi 2M)^{2}$

pd minimum of d σ /d θ at 108 MeV [Ermischet al. $V_{3|G_0V|}^T$

nd σ_{tot} at 108 MeV [Abfalterer et $a_{\Gamma}[01] = V[G_0V]^{n-1} = r$

pd minimum of do/d0 at 70 MeV [Sekiguchi et al.'02] ~ 1

nd otot at 70 MeV [Abfalterer et al.'01]

nd scattering length ²a [Schoen et al.'03]

 $\langle p', \alpha$

CAK RIDGE National Laboratory

 $\langle p', \alpha' | V_{1\pi}^{\mathrm{reg}} | p \rangle$ LENPIC, 1807.02848 [based on EKM, R = 0.9 fm]

yields the strongest constraint...

Light nuclei EE et al. (LENPIC), arXiv:1807.02848

3NFs

c_D

3NFs

c_D

Intermediate summary

- The 2N sector is in a good shape: chiral potentials at N⁴LO⁺ yield nearly perfect description of np and pp data up to 300 MeV. No significant improvement can be achieved by going to even higher orders.
- 3NF extensively explored at N²LO. The results are promising, but the truncation error is still large at this order. Things to be avoided:
 - optimization beyond the actual accuracy of the theory by compromising the rigor (inconsistent combinations of the interactions, LECs incompatible with π N, lack of error analysis, ...)
 - focusing on a too restricted set of observables (spectra + radii of nuclei + EOS).
 Cannot claim to understand 3NF unless Nd data are properly described.

The quest for high-precision calculations beyond the 2N system: a <u>major</u> challenge for chiral EFT!

The 3NF challenge

Nd scattering studies have revealed: [Glöckle, Witala, Kievsky, Viviani, Deltuva, ...]

- High-precision 2N potentials alone (N⁴LO⁺, CDBonn, Nijm, AV18,...) yield similar predictions.
- Good description of data at low E_N (except for A_y and SST).
- Discrepancies set in at $E_N \sim 50$ MeV and become large at $E_N \sim 200$ MeV. Phenomenological 3NFs do not help. χ EFT 3NF@N²LO inconclusive (too large uncertainty).

-> The simplest system beyond NN is poorly understood! [talk by Kimiko Sekiguchi]

One needs to push chiral EFT to N⁴LO and perform a PWA of Nd scattering (similar to NN). Computational ($2_{[N2LO]} + >10_{[N4LO]}$ LECs) & conceptual (consistent regularization) challenges!

from: Kalantar-Nayestanaki, EE, Messchendorp, Nogga, Rept. Prog. Phys. 75 (2012) 016301

Regularization and the symmetries

talk by Hermann Krebs in the FB WG

$$V(q) = \frac{2}{\pi} \int_{2M_{\pi}}^{\infty} \mu \, d\mu \frac{\rho(\mu)}{q^2 + \mu^2} + \dots \longrightarrow V_{\Lambda}(q) = e^{-\frac{q^2}{2\Lambda^2}} \frac{2}{\pi} \int_{2M_{\pi}}^{\infty} \mu \, d\mu \frac{\rho(\mu)}{q^2 + \mu^2} e^{-\frac{\mu^2}{2\Lambda^2}} + \dots$$

Regulator artifacts can <u>always</u> be absorbed into NN LECs (<u>no constraints from χ -symm</u>.).

This is **NOT** true anymore beyond the NN system!

 may encounter χ-symmetry breaking divergences (ambiguous). Using DR to compute 3NFs/currents and cutoff in ladder graphs (iterations) is problematic.

- naive cutoff regularization breaks χ -symmetry (dependence on π -parametrization).

These issues affect >2N forces & exchange currents beyond tree level (i.e. beyond N²LO)!

Solution: higher-derivative regularization [Slavnov, Nucl. Phys. B31 (1971) 301]

(designed to coincide with the employed local regularization in the NN sector)

$$\mathcal{L}_{\pi,\Lambda}^{(2)} = \mathcal{L}_{\pi}^{(2)} + \frac{F^2}{4} \operatorname{Tr}\left[\operatorname{EOM} \frac{1 - \exp\left(\frac{\operatorname{ad}_{D_{\mu}}\operatorname{ad}_{D^{\mu}} + \frac{1}{2}\chi_{+}}{\Lambda^2}\right)}{\operatorname{ad}_{D_{\mu}}\operatorname{ad}_{D^{\mu}} + \frac{1}{2}\chi_{+}} \operatorname{EOM}\right], \qquad \mathcal{L}_{\pi}^{(2)} = \frac{F^2}{4} \operatorname{Tr}\left[u_{\mu}u^{\mu} + \chi_{+}\right]$$
Hermann Krebs et al.

(preliminary)

with
$$\operatorname{EOM} \equiv -[D_{\mu}, u^{\mu}] + rac{i}{2}\chi_{-} - rac{i}{4}\operatorname{Tr}(\chi_{-})$$
 and $\operatorname{ad}_{X}Y \equiv [X, Y]$

Requires recalculation of the loop contributions to the 3NF/exchange currents (in progress)

IB effects and precision few-N physics

Neutron-neutron scattering length from few-N reactions

$$\pi^{-} + {}^{2}\text{H} \rightarrow \text{n} + \text{n} + \gamma \longrightarrow a_{nn} = -18.50 \pm 0.53 \text{ fm} \text{ Howell et al. '98}$$

$$n + {}^{2}\text{H} \rightarrow \text{n} + \text{n} + \text{p} \longrightarrow \begin{cases} a_{nn} = -18.7 \pm 0.6 \text{ fm} \text{ Gonzales Trotter et al. '99} \\ a_{nn} = -16.3 \pm 0.4 \text{ fm} \text{ Huhn et al. '00} \end{cases}$$

Can reproduce ${}^{2}a_{nd}$ using $a_{nn} \sim -16.5$ fm! Alternatives (3NF beyond N²LO, IB effects) need to be checked. Can one then still understand the BE differences of mirror nuclei?

Radii of medium-mass nuclei: A smoking gun?

- Preliminary results indicate that radii of heavier nuclei are underestimated (~ 15% for ¹⁶O)
- Calculations are incomplete: **3NFs** beyond N²LO and MECs are missing...
- High-precision 2NF + 3NF yield similar results in light nuclei, deviations increase with A

	r_D , ² H (fm)	r _{p} , ^{3} H (fm)	r_p , ⁴ He (fm)
AV18 + UIX	$1.967\;(\mathbf{-0.4\%})$	$1.584 \ (-1\%)$	1.44 (-2%)
CD-Bonn + TM99	1.966		1.42
$N^4LO^+ + 3NF@N^2LO$	1.967	1.580	1.43

Can the remaining discrepancies be removed by MECs?

• What could be the reason that the N²LO potentials by Ekström et al. are doing a good job?

NNLO_{sat}: r_D = 1.978 fm (+0.13%) Ekström et al., PRC91 (2015) 051301 $\Delta NNLO(450)$: r_D = 1.982 fm (+0.3%)

Ekström et al., PRC97 (2018) 024332

However, NN data seem to prefer smaller r_D:

	RKE N^4LO^+	Granada PWA ($\boldsymbol{\delta}$ -shell)	Nijm I	Nijm II	Reid93	CD-Bonn	Exp.
r_D , ² H (fm)	$1.965 \dots 1.968$	1.965	1.967	1.968	1.969	1.966	1.975

• Work in progress: calculations of the EM FFs of A = 2...16 nuclei including consistent MECs with Vadim Baru, Arseniy Filin, Daniel Möller + LENPIC Collaboration

Summary and outlook

• The most precise NN forces finally come from chiral EFT

- Pushing the accuracy/precision frontier in >2N systems requires addressing the 3NF problem: A computational and conceptual challenge
- Exciting field full of opportunities, unsolved problems and puzzles!

- hope to provide some answers at CD21 :-) -

Thanks to:

- the Bochum Group:

Vadim Baru, Arseniy Filin, Ashot Gasparyan, Hermann Krebs, Patrick Lipka, Daniel Möller, Patrick Reinert

- and to all my LENPIC collaborators

LENPIC: Low Energy Nuclear Physics International Collaboration